999 resultados para Line strengths
Resumo:
Background: Advanced colorectal cancer is treated with a combination of cytotoxic drugs and targeted treatments. However, how best to minimise the time spent taking cytotoxic drugs and whether molecular selection can refine this further is unknown. The primary aim of this study was to establish how cetuximab might be safely and effectively added to intermittent chemotherapy.
Methods: COIN-B was an open-label, multicentre, randomised, exploratory phase 2 trial done at 30 hospitals in the UK and one in Cyprus. We enrolled patients with advanced colorectal cancer who had received no previous chemotherapy for metastases. Randomisation was done centrally (by telephone) by the Medical Research Council Clinical Trials Unit using minimisation with a random element. Treatment allocation was not masked. Patients were assigned (1:1) to intermittent chemotherapy plus intermittent cetuximab or to intermittent chemotherapy plus continuous cetuximab. Chemotherapy was FOLFOX (folinic acid and oxaliplatin followed by bolus and infused fluorouracil). Patients in both groups received FOLFOX and weekly cetuximab for 12 weeks, then either had a planned interruption (those taking intermittent cetuximab) or planned maintenance by continuing on weekly cetuximab (continuous cetuximab). On RECIST progression, FOLFOX plus cetuximab or FOLFOX was recommenced for 12 weeks followed by further interruption or maintenance cetuximab, respectively. The primary outcome was failure-free survival at 10 months. The primary analysis population consisted of patients who completed 12 weeks of treatment without progression, death, or leaving the trial. We tested BRAF and NRAS status retrospectively. The trial was registered, ISRCTN38375681.
Findings: We registered 401 patients, 226 of whom were enrolled. Results for 169 with KRAS wild-type are reported here, 78 (46%) assigned to intermittent cetuximab and 91 (54%) to continuous cetuximab. 64 patients assigned to intermittent cetuximab and 66 of those assigned to continuous cetuximab were included in the primary analysis. 10-month failure-free survival was 50% (lower bound of 95% CI 39) in the intermittent group versus 52% (lower bound of 95% CI 41) in the continuous group; median failure-free survival was 12·2 months (95% CI 8·8–15·6) and 14·3 months (10·7–20·4), respectively. The most common grade 3–4 adverse events were skin rash (21 [27%] of 77 patients vs 20 [22%] of 92 patients), neutropenia (22 [29%] vs 30 [33%]), diarrhoea (14 [18%] vs 23 [25%]), and lethargy (20 [26%] vs 19 [21%]).
Interpretation: Cetuximab was safely incorporated in two first-line intermittent chemotherapy strategies. Maintenance of biological monotherapy, with less cytotoxic chemotherapy within the first 6 months, in molecularly selected patients is promising and should be validated in phase 3 trials.
Resumo:
Approximately 20 per cent of quasi-stellar objects (QSOs) exhibit broad, blue-shifted absorption lines in their ultraviolet spectra. Such features provide clear evidence for significant outflows from these systems, most likely in the form of accretion disc winds. These winds may represent the ‘quasar’ mode of feedback that is often invoked in galaxy formation/evolution models, and they are also key to unification scenarios for active galactic nuclei (AGN) and QSOs. To test these ideas, we construct a simple benchmark model of an equatorial, biconical accretion disc wind in a QSO and use a Monte Carlo ionization/radiative transfer code to calculate the ultraviolet spectra as a function of viewing angle. We find that for plausible outflow parameters, sightlines looking directly into the wind cone do produce broad, blue-shifted absorption features in the transitions typically seen in broad absorption line (BAL) QSOs. However, our benchmark model is intrinsically X-ray weak in order to prevent overionization of the outflow, and the wind does not yet produce collisionally excited line emission at the level observed in non-BAL QSOs. As a first step towards addressing these shortcomings, we discuss the sensitivity of our results to changes in the assumed X-ray luminosity and mass-loss rate, Ṁwind. In the context of our adopted geometry, Ṁwind ∼ Ṁacc is required in order to produce significant BAL features. The kinetic luminosity and momentum carried by such outflows would be sufficient to provide significant feedback.
Resumo:
This paper will consider the inter-relationship of a number of overlapping disciplinary theoretical concepts relevant to a strengths-based orientation, including well-being, salutogenesis, sense of coherence, quality of life and resilience. Psychological trauma will be referenced and the current evidence base for interventions with children and young people outlined and critiqued. The relational impact of trauma on family relationships is emphasised, providing a rationale for systemic psychotherapeutic interventions as part of a holistic approach to managing the effects of trauma. The congruence between second-order systemic psychotherapy models and a strengths-based philosophy is noted, with particular reference to solution-focused brief therapy and narrative therapy, and illustrated; via a description of the process of helping someone move from a victim position to a survivor identity using solution-focused brief therapy, and through a case example applying a narrative therapy approach to a teenage boy who suffered a serious assault. The benefits of a strength-based approach to psychological trauma for the clients and therapists will be summarised and a number of potential pitfalls articulated.
Resumo:
Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga & Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.
Resumo:
This study presents a model based on partial least squares (PLS) regression for dynamic line rating (DLR). The model has been verified using data from field measurements, lab tests and outdoor experiments. Outdoor experimentation has been conducted both to verify the model predicted DLR and also to provide training data not available from field measurements, mainly heavily loaded conditions. The proposed model, unlike the direct measurement based DLR techniques, enables prediction of line rating for periods ahead of time whenever a reliable weather forecast is available. The PLS approach yields a very simple statistical model that accurately captures the physical performance of the conductor within a given environment without requiring a predetermination of parameters as required by many physical modelling techniques. Accuracy of the PLS model has been tested by predicting the conductor temperature for measurement sets other than those used for training. Being a linear model, it is straightforward to estimate the conductor ampacity for a set of predicted weather parameters. The PLS estimated ampacity has proven its accuracy through an outdoor experiment on a piece of the line conductor in real weather conditions.
Resumo:
This paper presents a statistical model for the thermal behaviour of the line model based on lab tests and field measurements. This model is based on Partial Least Squares (PLS) multi regression and is used for the Dynamic Line Rating (DLR) in a wind intensive area. DLR provides extra capacity to the line, over the traditional seasonal static rating, which makes it possible to defer the need for reinforcement the existing network or building new lines. The proposed PLS model has a number of appealing features; the model is linear, so it is straightforward to use for predicting the line rating for future periods using the available weather forecast. Unlike the available physical models, the proposed model does not require any physical parameters of the line, which avoids the inaccuracies resulting from the errors and/or variations in these parameters. The developed model is compared with physical model, the Cigre model, and has shown very good accuracy in predicting the conductor temperature as well as in determining the line rating for future time periods.
Resumo:
Context. Absorption or emission lines of Fe II are observed in many astrophysical spectra and accurate atomic data are required to interpret these lines. The calculation of electron-impact excitation rates for transitions among even the lowest lying levels of Fe II is a formidable task for theoreticians.
Aims. In this paper, we present collision strengths and effective collision strengths for electron-impact excitation of Fe II for low-lying forbidden transitions among the lowest 16 fine-structure levels arising from the four LS states 3d(6)4s D-6(e), 3d(7) F-4(e), 3d(6)4s D-4(e), and 3d(7) P-4(e). The effective collision strengths are calculated for a wide range of electron temperatures of astrophysical importance from 30-100 000 K.
Methods. The parallel suite of Breit-Pauli codes are utilised to compute the collision cross sections for electron-impact excitation of Fe II and relativistic terms are included explicitly in both the target and the scattering approximation. 100 LS or 262-jj levels formed from the basis configurations 3d(6)4s, 3d(7), and 3d(6)4p were included in the wavefunction representation of the target, including all doublet, quartet, and sextet terms. Collision strengths for a total of 34191 individual transitions were computed.
Results. A detailed comparison is made with previous theoretical works and significant differences were found to occur in the effective collision strengths, particularly at low temperatures.
Resumo:
We present an algebro-geometric approach to a theorem on finite domination of chain complexes over a Laurent polynomial ring. The approach uses extension of chain complexes to sheaves on the projective line, which is governed by a K-theoretical obstruction.
Resumo:
DC line faults on high-voltage direct current (HVDC) systems utilising voltage source converters (VSCs) are a major issue for multi-terminal HVDC systems in which complete isolation of the faulted system is not a viable option. Of these faults, single line-to-earth faults are the most common fault scenario. To better understand the system under such faults, this study analyses the behaviour of HVDC systems based on both conventional two-level converter and multilevel modular converter technology, experiencing a permanent line-to-earth fault. Operation of the proposed system under two different earthing configurations of converter side AC transformer earthed with converter unearthed, and both converter and AC transformer unearthed, was analysed and simulated, with particular attention paid to the converter operation. It was observed that the development of potential earth loops within the system as a result of DC line-to-earth faults leads to substantial overcurrent and results in oscillations depending on the earthing configuration.
Resumo:
Background There is growing evidence linking early social and emotional wellbeing to later academic performance and various health outcomes including mental health. An economic evaluation was designed alongside the Roots of Empathy cluster-randomised trial evaluation, which is a school-based intervention for improving pupils’ social and emotional wellbeing. Exploration of the relevance of the Strengths and Diffi culties Questionnaire (SDQ) and Child Health Utility 9D (CHU9D) in school-based health economic evaluations is warranted. The SDQ is a behavioural screening questionnaire for 4–17-year-old children, consisting of a total diffi culties score, and also prosocial behaviour,
which aims to identify positive aspects of behaviour. The CHU9D is a generic preference-based health-related quality of life instrument for 7–17-year-old children.