979 resultados para Light absorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low temperature Raman spectroscopic measurements on silver nitroprusside (AgNP), Ag-2Fe(CN)(5)NO] powders display reversible features of a partially converted metastable state. The results are compared with similarly observed metastable state in case of sodium nitroprusside (NaNP) and the differences have been discussed in terms of possible resistance to metastable state formation offered by silver atoms on the basis of hard soft acid base (HSAB) theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report synthesis of symmetrically and non-symmetrically functionalized fluoranthene-based blue fluorescent molecular materials for non-doped electroluminescent devices. The solid state structure of these fluorophores has been established by single crystal X-ray diffraction analysis. Furthermore, a detailed experimental and theoretical study has been performed to understand the effect of substitution of symmetric and non-symmetric functional groups on optical, thermal and electrochemical properties of fluoranthene. These materials exhibit a deep blue emission and high PLQY in solution and solid state. The vacuum deposited, non-doped electroluminescent devices with the device structure ITO/NPD (15 nm)/CBP (15 nm)/EML (40 nm)/TPBI (30 nm)/LiF (1 nm)/Al were fabricated and characterized. A systematic shift in the peak position of EL emission was observed from sky blue to bluish-green with EL maxima from 477 nm to 490 nm due to different functional groups on the periphery of fluoranthene. In addition, a high luminance of >= 2000 cd m(-2) and encouraging external quantum efficiency (EQE) of 1.1-1.4% were achieved. A correlation of the molecular structure with device performance has been established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoacoustic (PA) imaging of interphalangeal peripheral joints is of interest in the context of using the synovial membrane as a surrogate marker of rheumatoid arthritis. Previous work has shown that ultrasound (US) produced by absorption of light at the epidermis reflects on the bone surfaces within the finger. When the reflected signals are backprojected in the region of interest, artifacts are produced, confounding interpretation of the images. In this work, we present an approach where the PA signals known to originate from the epidermis are treated as virtual US transmitters, and a separate reconstruction is performed as in US reflection imaging. This allows us to identify the bone surfaces. Furthermore, the identification of the joint space is important as this provides a landmark to localize a region-of-interest in seeking the inflamed synovial membrane. The ability to delineate bone surfaces allows us to identify not only the artifacts but also the interphalangeal joint space without recourse to new US hardware or a new measurement. We test the approach on phantoms and on a healthy human finger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate a limited-view light sheet microscopy (LV-LSM) for three dimensional (3D) volume imaging. Realizing that longer and frequent image acquisition results in significant photo-bleaching, we have taken limited angular views (18 views) of the macroscopic specimen and integrated with maximum likelihood (ML) technique for reconstructing high quality 3D volume images. Existing variants of light-sheet microscopy require both rotation and translation with a total of approximately 10-fold more views to render a 3D volume image. Comparatively, LV-LSM technique reduces data acquisition time and consequently minimizes light-exposure by many-folds. Since ML is a post-processing technique and highly parallelizable, this does not cost precious imaging time. Results show noise-free and high contrast volume images when compared to the state-of-the-art selective plane illumination microscopy. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation). (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation). (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and synthesis of two structurally close and complementarily fluorescent boron based molecular siblings 2 and 3 are reported. The luminescence properties of individual triads are modulated to complement each other by controlling the intramolecular energy transfer in 2 and 3. The binary mixture of 2 and 3 emits white-light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T-1 and T-2 states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S-0 state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S-0, T-1, and T-2 states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the n pi* triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor quantum dots have replaced conventional inorganic phosphors in numerous applications. Despite their overall successes as emitters, their impact as laser materials has been severely limited. Eliciting stimulated emission from quantum dots requires excitation by intense short pulses of light typically generated using other lasers. In this Letter, we develop a new class of quantum dots that exhibit gain under conditions of extremely low levels of continuous wave illumination. We observe thresholds as low as 74 mW/cm(2) in lasers made from these materials. Due to their strong optical absorption as well as low lasing threshold, these materials could possibly convert light from diffuse, polychromatic sources into a laser beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of vanadium and nitrogen co-doped TiO2 for photocatalysis mainly emphasizing the state of nitrogen doping into TiO2 in the presence of vanadium ions. Considering the increase in antibiotic resistance developed by microbes due to the excess of pharmaceutical waste in the ecosystem, the photocatalytic activity was measured by degrading an antibiotic, chloramphenicol. A novel experiment was conducted by degrading the antibiotic and bacteria in each other's vicinity to focus on their synergistic photo-degradation by V-N co-doped TiO2. The catalysts were characterized using XRD, DRS, PL, TEM, BET and XPS analysis. Both interstitial and substitutional nitrogen doping were achieved with V-TiO2, showing high efficiency under visible light for antibiotic and bacterial degradation. In addition, the effect of doping concentration of nitrogen and vanadium in TiO2 and catalyst loading was studied thoroughly. Reusability experiments show that the prepared V-N co-doped TiO2 was stable for many cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a hybrid device based on a microcantilever interfaced with bacteriorhodopsin (bR) is constructed. The microcantilever, on which the highly oriented bR film is self-assembled, undergoes controllable and reversible bending when the light-driven proton pump protein, bR, on the microcantilever surface is activated by visible light. Several control experiments are carried out to preclude the influence of heat and photothermal effects. It is shown that the nanomechanical motion is induced by the resulting gradient of protons, which are transported from the KCl solution on the cytoplasmic side of the bR film towards the extracellular side of the bR film. Along with a simple physical interpretation, the microfabricated cantilever interfaced with the organized molecular film of bR can simulate the natural machinery in converting solar energy to mechanical energy.