959 resultados para Leaf Disc Bioassay


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. According to the sequential accretion model (or core-nucleated accretion model), giant planet formation is based first on the formation of a solid core which, when massive enough, can gravitationally bind gas from the nebula to form the envelope. The most critical part of the model is the formation time of the core: to trigger the accretion of gas, the core has to grow up to several Earth masses before the gas component of the protoplanetary disc dissipates. Aims: We calculate planetary formation models including a detailed description of the dynamics of the planetesimal disc, taking into account both gas drag and excitation of forming planets. Methods: We computed the formation of planets, considering the oligarchic regime for the growth of the solid core. Embryos growing in the disc stir their neighbour planetesimals, exciting their relative velocities, which makes accretion more difficult. Here we introduce a more realistic treatment for the evolution of planetesimals' relative velocities, which directly impact on the formation timescale. For this, we computed the excitation state of planetesimals, as a result of stirring by forming planets, and gas-solid interactions. Results: We find that the formation of giant planets is favoured by the accretion of small planetesimals, as their random velocities are more easily damped by the gas drag of the nebula. Moreover, the capture radius of a protoplanet with a (tiny) envelope is also larger for small planetesimals. However, planets migrate as a result of disc-planet angular momentum exchange, with important consequences for their survival: due to the slow growth of a protoplanet in the oligarchic regime, rapid inward type I migration has important implications on intermediate-mass planets that have not yet started their runaway accretion phase of gas. Most of these planets are lost in the central star. Surviving planets have masses either below 10 M⊕ or above several Jupiter masses. Conclusions: To form giant planets before the dissipation of the disc, small planetesimals (~0.1 km) have to be the major contributors of the solid accretion process. However, the combination of oligarchic growth and fast inward migration leads to the absence of intermediate-mass planets. Other processes must therefore be at work to explain the population of extrasolar planets that are presently known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiomyocytes grow during heart maturation or disease-related cardiac remodeling. We present evidence that the intercalated disc (ID) is integral to both longitudinal and lateral growth: increases in width are accommodated by lateral extension of the plicate tread regions and increases in length by sarcomere insertion within the ID. At the margin between myofibril and the folded membrane of the ID lies a transitional junction through which the thin filaments from the last sarcomere run to the ID membrane and it has been suggested that this junction acts as a proto Z-disc for sarcomere addition. In support of this hypothesis, we have investigated the ultrastructure of the ID in mouse hearts from control and dilated cardiomyopathy (DCM) models, the MLP-null and a cardiac-specific β-catenin mutant, cΔex3, as well as in human left ventricle from normal and DCM samples. We find that the ID amplitude can vary tenfold from 0.2 μm up to a maximum of ~2 μm allowing gradual expansion during heart growth. At the greatest amplitude, equivalent to a sarcomere length, A-bands and thick filaments are found within the ID membrane loops together with a Z-disc, which develops at the transitional junction position. Here, also, the tops of the membrane folds, which are rich in αII spectrin, become enlarged and associated with junctional sarcoplasmic reticulum. Systematically larger ID amplitudes are found in DCM samples. Other morphological differences between mouse DCM and normal hearts suggest that sarcomere inclusion is compromised in the diseased hearts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative computer tomography (QCT)-based finite element (FE) models of vertebral body provide better prediction of vertebral strength than dual energy X-ray absorptiometry. However, most models were validated against compression of vertebral bodies with endplates embedded in polymethylmethalcrylate (PMMA). Yet, loading being as important as bone density, the absence of intervertebral disc (IVD) affects the strength. Accordingly, the aim was to assess the strength predictions of the classic FE models (vertebral body embedded) against the in vitro and in silico strengths of vertebral bodies loaded via IVDs. High resolution peripheral QCT (HR-pQCT) were performed on 13 segments (T11/T12/L1). T11 and L1 were augmented with PMMA and the samples were tested under a 4° wedge compression until failure of T12. Specimen-specific model was generated for each T12 from the HR-pQCT data. Two FE sets were created: FE-PMMA refers to the classical vertebral body embedded model under axial compression; FE-IVD to their loading via hyperelastic IVD model under the wedge compression as conducted experimentally. Results showed that FE-PMMA models overestimated the experimental strength and their strength prediction was satisfactory considering the different experimental set-up. On the other hand, the FE-IVD models did not prove significantly better (Exp/FE-PMMA: R²=0.68; Exp/FE-IVD: R²=0.71, p=0.84). In conclusion, FE-PMMA correlates well with in vitro strength of human vertebral bodies loaded via real IVDs and FE-IVD with hyperelastic IVDs do not significantly improve this correlation. Therefore, it seems not worth adding the IVDs to vertebral body models until fully validated patient-specific IVD models become available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Reproducibility of basic research investigations in homeopathy is challenging. This study investigated if formerly observed effects of homeopathically potentised gibberellic acid (GA3) on growth of duckweed (Lemna gibba L.) were reproducible. METHODS: Duckweed was grown in potencies (14x-30x) of GA3 and one time succussed and unsuccussed water controls. Outcome parameter area-related growth rate was determined by a computerised image analysis system. Three series including five independent blinded and randomised potency experiments (PE) each were carried out. System stability was controlled by three series of five systematic negative control (SNC) experiments. Gibbosity (a specific growth state of L. gibba) was investigated as possibly essential factor for reactivity of L. gibba towards potentised GA3 in one series of potency and SNC experiments, respectively. RESULTS: Only in the third series with gibbous L. gibba L. we observed a significant effect (p = 0.009, F-test) of the homeopathic treatment. However, growth rate increased in contrast to the former study, and most biologically active potency levels differed. Variability in PE was lower than in SNC experiments. The stability of the experimental system was verified by the SNC experiments. CONCLUSIONS: Gibbosity seems to be a necessary condition for reactivity of L. gibba to potentised GA3. Further still unknown conditions seem to govern effect direction and the pattern of active and inactive potency levels. When designing new reproducibility studies, the physiological state of the test organism must be considered. Variability might be an interesting parameter to investigate effects of homeopathic remedies in basic research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Senescence is a form of programmed cell death (PCD) which leads to the death of whole organs, e.g., leaves or flowers, and eventually to the death of entire plants. Like all forms of PCD, senescence is a highly regulated and energy consuming process. Senescence parameters, like protein content, chlorophyll content, expression of photosynthesis-associated genes or senescence-associated genes (SAGs), reveal that senescence occurs in old leaves derived from young plants (6 week old) as well as in young leaves derived from older plants (8 week old), indicating that it is governed by the actual age of the leaves. in order to analyse the differential gene expression profiles during leaf senescence, hybridizations of high-density genome arrays were performed with: i) individual leaves within the rosette of a 6-week-old plant and ii) leaves of the same position within the rosette but harvested from plants of different ages, ranging from 5 to 8 weeks. Cluster and genetree analyses, according to the expression pattern revealed that genes which are up-regulated with respect to the age of the entire plant, showed completely different expression profiles with respect to the age of the individual leaves within one rosette. This was observed even though the actual difference in leaf age was approximately the same. This indicates that gene expression appears to be governed by different parameters: i) the age of the individual leaf and ii) the age and developmental stage of the entire plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbivore-induced systemic resistance occurs in many plants and is commonly assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to systemic resistance are largely understood, but it remains unknown how and why root herbivory also increases resistance in leaves. To resolve this, we investigated the mechanism by which the root herbivore Diabrotica virgifera induces resistance against lepidopteran herbivores in the leaves of Zea mays. Diabrotica virgifera infested plants suffered less aboveground herbivory in the field and showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. Root herbivory did not lead to a jasmonate-dependent response in the leaves, but specifically triggered water loss and abscisic acid (ABA) accumulation. The induction of ABA by itself was partly responsible for the induction of leaf defenses, but not for the resistance against S. littoralis. Root-herbivore induced hydraulic changes in the leaves, however, were crucial for the increase in insect resistance. We conclude that the induced leaf resistance after root feeding is the result of hydraulic changes, which reduce the quality of the leaves for chewing herbivores. This finding calls into question whether root-herbivore induced leaf-resistance is an evolved response. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaves are arranged according to regular patterns, a phenomenon referred to as phyllotaxis. Important determinants of phyllotaxis are the divergence angle between successive leaves, and the size of the leaves relative to the shoot axis. Young leaf primordia are thought to provide positional information to the meristem, thereby influencing the positioning of new primordia and hence the divergence angle. On the contrary, the meristem signals to the primordia to establish their dorsoventral polarity, which is a prerequisite for the formation of a leaf blade. These concepts originate from classical microsurgical studies carried out between the 1920s and the 1970s. Even though these techniques have been abandoned in favor of genetic analysis, the resulting insights remain a cornerstone of plant developmental biology. Here, we employ new microsurgical techniques to reassess and extend the classical studies on phyllotaxis and leaf polarity. Previous experiments have indicated that the isolation of an incipient primordium by a tangential incision caused a change of divergence angle between the two subsequent primordia, indicating that pre-existing primordia influence further phyllotaxis. Here.. we repeat these experiments and compare them with the results of laser ablation of incipient primordia. Furthermore. we explore to what extent the different pre-existing primordia influence the size and position of new organs. and hence phyllotaxis. We propose that the two youngest primordia (P-1 and P-2) are sufficient for the approximate positioning of the incipient primordium (I-1), and therefore for the perpetuation of the generative spiral, whereas the direct contact neighbours of I-1 (P-2 and P-3) control its delimitation and hence its exact size and position. Finally. we report L I specific cell ablation experiments suggesting that the meristem L-1 layer is essential for the dorsoventral patterning of leaf primordia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auxin is of vital importance in virtually every aspect of plant growth and development, yet, even after almost a century of intense study, major gaps in our knowledge of its synthesis, distribution, perception, and signal transduction remain. One unique property of auxin is its polar transport, which in many well-documented cases is a critical part of its mode of action. Auxin is actively transported through the action of both influx and efflux carriers. Inhibition of polar transport by the efflux inhibitor N-1-naphthylphthalamic acid (NPA) causes a complete cessation of leaf initiation, a defect that can be reversed by local application of the auxin, indole-3-acetic acid (IAA), to the responsive zone of the shoot apical meristem. In this study, we address the role of the auxin influx carrier in the positioning and outgrowth of leaf primordia at the shoot apical meristem of tomato. By using a combination of transport inhibitors and synthetic auxins, we demonstrate that interference with auxin influx has little effect on organ formation as such, but prevents proper localization of leaf primordia. These results suggest the existence of functional auxin concentration gradients in the shoot apical meristem that are actively set up and maintained by the action of efflux and influx carriers. We propose a model in which efflux carriers control auxin delivery to the shoot apical meristem, whereas influx and efflux carriers regulate auxin distribution within the meristem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Drought is one of the most significant factors that limit plant productivity. Oxidative stress is a secondary event in many unfavorable environmental conditions. Intracellular proteases have a role in the metabolism reorganisation and nutrient remobilization under stress. In order to under stand the relative significance of oxidative stress and proteolysis in the yield reduction under drought, four varieties of Triticum aestivum L. with different field drought resistance were examined. Methods: A two-year field experiment was conducted. Analyses were performed on the upper most leaf of control plants and plants under water deficitat the stages most critical for yield reduction under drought (from jointing till milk ripeness). Leaf water deficit and electrolyte leakage, malondyaldehyde level, activities and isoenzymes of superoxide dismutase, catalase and peroxidase, leaf protein content and proteolytic activity were studied. Yield components were analyzed. Results: A general trend of increasing the membrane in stability and accumulation of lipid hydroperoxides was observed with some differences among varieties, especially under drought. The anti-oxidative enzyme activities were progressively enhanced, as well as the azocaseinolytic activities. The leaf protein content decreased under drought at the last phase. Differences among varieties were observed in the parameters under study. They were compared to yield components` reduction under water deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low back pain is a common ailment in dogs, particularly in specific breeds such as the German shepherd dog. A number of structures such as facet joint capsules, ligaments, dorsal root ganglia, periosteum, vertebral endplates and meninges have been associated with this condition. Yet, in spite of all diagnostic efforts, the origin of pain remains obscure in a substantial proportion of all cases. A further structure often being involved in vertebral column disorders is the intervertebral disc. The presence of nerves, however, is a precondition for pain sensation and, consequently, structures lacking innervation can be left out of consideration as a cause for low back pain. Nerve fibres have been demonstrated at the periphery of the intervertebral disc in man, rabbit and rat. With regard to the dog, however, the extent of intervertebral disc innervation is still being disputed. The goal of the present study, therefore, was to substantiate and expand current knowledge of intervertebral disc innervation. Protein gene product (PGP) 9.5 was used for immunohistochemical examination of serial transversal and sagittal paraffin sections of lumbar discs from adult dogs. This general marker revealed nerve fibres to be confined to the periphery of the intervertebral discs. These results indicate that even limited pathological processes affecting the outer layers of the intervertebral disc are prone to cause low back pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Toward the end of the nineteenth century, it was Gowers, Horsley and Macewen who first reported successful surgical procedures for the treatment of subdural extramedullary tumors. Following this, Church and Eisendrath as well as Putnam and Warren reported unsuccessful attempts to treat subpial spinal pathologies in their patients. Only at the beginning of the twentieth century did reports of successful interventions of this type accumulate. In the analysis of these case reports, the authors noticed a certain lack of accuracy about the anatomical allocations and descriptions of intra- and extramedullary spinal lesions. From this, the question of who actually carried out the pioneering works in the early twentieth century in the field of surgery of intramedullary pathologies arose. METHODS Analysis of the relevant original publications of Hans Brun and research on the poorly documented information about his life history by personally contacting contemporary relatives. RESULTS The literature analysis showed that the Swiss neurologist Otto Veraguth and surgeon Hans Brun made fundamental contributions to subpial spinal cord surgery at the very beginning of the last century that remain valid today. According to our research, Hans Brun should be remembered as the third surgeon (after von Eiselsberg and Elsberg) who successfully removed an intramedullary lesion in a patient. CONCLUSION Brun should be remembered as an early and successful surgeon in this specialized field. His operative work is described in detail in this article. At the same time, his achievements in the fields of brain and disc herniation surgery are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paleoenvironmental and paleoclimate reconstructions based on molecular proxies, such as those derived from leaf-wax biomarkers, in loess-paleosol sequences represent a promising line of investigation in Quaternary research. The main premise of such reconstructions is the synsedimentary deposition of biomarkers and dust, which has become a debated subject in recent years. This study uses two independent approaches to test the stratigraphic integrity of leaf-wax biomarkers: (i) long-chain n-alkanes and fatty acids are quantified in two sediment-depth profiles in glacial till on the Swiss Plateau, consisting of a Holocene topsoil and the underlying B and C horizons. Since glacial sediments are initially very poor in organic matter, significant amounts of leaf-wax biomarkers in the B and C horizons of those profiles would reflect postsedimentary root-derived or microbial contributions. (ii) Compound-specific radiocarbon measurements are conducted on n-alkanes and n-alkanoic (fatty) acids from several depth intervals in the loess section "Crvenka", Serbia, and the results are compared to independent estimates of sediment age. We find extremely low concentrations of plant-wax n-alkanes and fatty acids in the B and C horizons below the topsoils in the sediment profiles. Moreover, compound-specific radiocarbon analysis yields plant-wax 14C ages that agree well with published luminescence ages and stratigraphy of the Serbian loess deposit. Both approaches confirm that postsedimentary, root-derived or microbial contributions are negligible in the two investigated systems. The good agreement between the ages of odd and even homologues also indicates that reworking and incorporation of fossil leaf waxes is not particularly relevant either.