965 resultados para Laser Induced Fluorescence
Resumo:
To investigate effects of nitric oxide on cellular radio-sensitivity, three human glioma cell lines, i.e. A172, A172 transfected green fluorescence protein (EGFP) gene (EA172) and A172 transfected inducible nitric oxide synthesis (iNOS) gene (iA72), were irradiated by C-12(6+) ions to 0, 1 or My. Productions of nitric oxide and glutathione (GSH) in A172, EA172 and iA172 were determined by chemical methods, cell cycle was analyzed by flow cytometry at the 24th hour after irradiation, and survival fraction of the cells was measured by colorimetric MTT assay at the 5th day after irradiation. The results showed that the concentrations of nitric oxide and GSH in iA172 were significantly higher than in A172 and EA172; the G(2)/M stage arrest induced by the C-12(6+) ion irradiation was observed in A172 and EA172 but not in iA172 at the 24th hour after exposure; and the survival fraction of iA172 was higher than that of EA172 and iA172. Data suggest that the radio-sensitivity of the A172 was reduced after the iNOS gene transfection. The increase of GSH production and the change of cellular signals such as the cell cycle control induced by nitric oxide may be involved in this radio-resistance.
Resumo:
Cluster assisted photoionization processes of benzene, which was seeded in argon, induced by an intense 25 ns Nd-YAG laser has been studied by means of time-of-flight mass spectrometry. At the laser intensity of 10(11) W/cm(2), multicharged ions Cq+ (q = 2-3) with kinetic energy up to 150 eV were observed in the mass spectra. Strong evidences Support that these ions are formed in the Coulomb explosion of multicharged benzene cluster ions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A capillary array electrophoresis system with rotary corifocal fluorescence scanner was reported. High speed direct current rotary motor combined with a rotary encoder and the reflection mirror has been designed to direct exactly the excitation laser beam. to the array of capillaries, which are symmetrically distributed around the motor. The rotary encoder is introduced to accurately orient the position of each capillary and its output signal triggers the data acquiring system to record. the fluorescence signal corresponding to each capillary. Separations of several amino acids are demonstrated by eight-channel capillary array electrophoresis built by ourselves.
Resumo:
Ion - molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser- ablation supersonic expansion nozzle source. Photo- induced reactions in the 1: 1 complexes have been studied in the spectral range of 230 - 410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 3(2)P <-- 3(2)S atomic transition. The ground state geometry of Mg+ - OCNC2H5 was fully optimized at B3LYP/6- 31 - G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3P(x,y,z) excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo- induced reactions of Mg+ (OCNC2H5). (C) 2003 American Institute of Physics.
Resumo:
Spherical gold nanoparticles (3-5 nm) undergo a surprising fragmentation without extra energy imput and are converted into ultrasmall particles (less than 1.5 nm), which is a direct result of electron transfer between gold nanoparticles and cysteine.
Resumo:
We report single mode and multimodes lasing emission from conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) doped polystyrene ( PS) thin films with surface ripples. Surface ripples were formed by water vapour-induced phase separation. A single mode lasing emission at 606 nm with a line-width of less than 0.4 nm was obtained. The laser threshold was as low as 3.5 mu J pulse(-1). The side mode suppression ratio was 5.76 dB. The periodic changes of the refraction index in the MEH-PPV : PS blending film due to the phase separation should be attributed to the lasing actions.
Resumo:
Single-walled carbon nanotubes (SWNTs) can selectively induce human telomeric i-motif DNA formation at pH 7.0. Based on this property, we design a DNA nanomachine induced by SWNTs on gold surface. The motor DNA is human telomeric G-quadruplex DNA. The reversible hybridization between the motor DNA and its complementary human telomeric i-motif DNA can be modulated by SWNTs without changing solution pH. Up to now, to our knowledge, there is no report to show that a DNA nanomachine is induced by SWNTs or a DNA nanomachine can detect i-motif formation at pH 7.0. Our work may provide a new concept for designing an SWNT-induced DNA nanomachine and for the detection of i-motif DNA structure at pH 7.0. DNA hybridization, conformational transition and i-motif formation have been characterized on surface or in solution by fluorescence confocal microscopy, circular dichroism, DNA melting and gel electrophoresis. The folding and unfolding kinetics of the DNA nanomachine on gold surface were studied by Fourier transform-surface plasmon resonance (FT-SPR). All these results indicate that SWNTs can induce the DNA nanomachine to work efficiently and reversibly.
Resumo:
Strong supramolecular interactions, which induced tight packing and rigid molecules in crystals of cyano substituent oligo(para-phenylene vinylene) (CN-DPDSB), are the key factor for the high luminescence efficiency of its crystals; opposite to its isolated molecules in solution which have very low luminescence efficiency.
Resumo:
The glass sample based on the composition of 45PbF(2)-45GeO(2)-10WO(3) co-doped with Yb3+/Er3+ was prepared by the fusion method in two steps: melted at 950 degreesC for 20 similar to 25 min then annealed at 380 degreesC for 4 h. Through the V-prism it is found that the refractive index of host glass and the sample are 1.517 and 1.65 respectively. The transmittance was observed by using the ultraviolet-visible-infrared spectrometer in the wavelength range from 0.35 to 2.5mum. The transmittaitce of the host glass is beyond 73%. That of the sample is beyond 50% and there are characteristic absorption peaks of rare-earth ions. The emission spectrum was measured by using the Hitachi F-4500 fluorescent spectrometer pumped by 980 nm semiconductor laser. There are a strong emission peak at 530 nm and a weak peak at 650 nm.
Resumo:
We reported, for the first time to the best of our knowledge, the Sm3+ -doped yttriurn oxysulfide phosphors has reddish orange long-lasting phosphorescence. The phosphor show prominent luminescence in reddish orange due to the electronic transitions of (4)G(5/2) --> H-6(J) (J = 5/2, 7/2, 9/2), the afterglow color of this type of phosphors is a mixture of the three above mentioned electronic transition emissions and have a little different when the concentration of the Sm3+ dopant changes. Synthesis procedure of the Sm3+-yttrium oxysulfide reddish orange phosphor through the flux fusion method with binary flux compositions was presented. The synthesized phosphors were analyzed using X-ray diffraction (XRD) to interpret the structural characterization. The XRD analysis result reveal that the Y2O2S:Sm3+ phosphor synthesized with a binary flux composition containing (S and Na2CO3 at a ratio of 1: 1 at 30 wt.% of total raw material) at 1050degreesC for 3 h was in single-phase. Luminescence properties of the Y2O2S:Sm3+ long-lasting phosphor was analyzed by measuring the excitation spectra, emission spectra and afterglow decay curve. The mechanism of the strong afterglow from Y2O2S:Sm3+ was also discussed in this paper.
Resumo:
Conformational changes of beta-lactoglobulin (beta-LG) induced by anionic phospholipid (dimyristoylphosphatidylglycerol, DMPG) at physiological conditions (pH 7.0) have been investigated by UV-VIS, circular dichroism (CD) and fluorescence spectra. The experimental results suggest that beta-LG-DMPG interactions cause beta-LG a structural reorganization of the secondary structure elements accompanied by an increase in alpha-helical content, and a loosening of the protein tertiary structure. The interaction forces between beta-LG and DMPG are further evaluated by fluorescence spectra. The fluorescence spectral data show that conformational changes in the protein are driven by electrostatic interaction at first, then by hydrophobic interaction between a protein with a negative net charge and a negatively charged phospholipid.
Resumo:
Because of the extremely sensitivity to the local environment of the D-5(0) --> F-7(2) transition of Eu3+ ion, the fluorescence of Eu3+ ions was Studied by introducing Eu3+ ions to TiO2 gel by the sol-gel method, from which the structural changes of TiO2 gel were characterized. The results showed that the intensity of D-5(0) --> F-7(2) transition increased with the increasement of heat treatment temperature, which indicated the evaporation of molecular water and the completeness of the condensation reaction. Because of the quenching of the fluorescence induced by the cluster of Eu3+ ions, the addition of Al3+ ions greatly enhanced the emission intensity of Eu3+ ion.
Resumo:
Fluorescence of terbium(III) was sensitized when excited in the presence of sparfloxacin (SPFX) in the aqueous solution because a Tb(III)-SPFX complex was formed. The sensitized fluorescence was further enhanced when this system was exposed to 365 nm ultraviolet light. By the spectral properties and contrast experiments, it is proved that irradiation makes this system undergo photochemical reactions and a new terbium complex which is more favorable to the intramolecular energy transfer is formed. The mechanism of photochemical fluorescence enhancement of the Tb(III)-SPFX system is discussed and a new sensitive and selective photochemical fluorimetry for the determination of SPFX is established. Under the optimum conditions, the linear range is 1.0-50 x 10(-7) M for SPFX, the detection limit is 3.0 x 10(-9) M and the R.S.D. for 5.0 x 10(-7) M SPFX is 1.3% (n = 9). Without any pretreatment the recovery of SPFX in human urine was determined with satisfaction. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Synchronous fluorescence spectra of cytochrome c solutions were studied. It was found that synchronous fluorescence spectra of tyrosine and tryptophan residues in cytochrome c molecules can be separated using different wavelength intervals. The changes in synchronous fluorescence spectra of cytochrome c solutions with the solution pH are different from that of free tyrosine and tryptophan and reflect the pH-induced conformational transitions of cytochrome c molecules. (C) 1995 Academic Press, Inc.