997 resultados para LOAD REGULATION
Resumo:
Gamete release is an essential event in artificial seeding of the economic brown seaweed, Hizikia fusiforme. Mass egg release occurred in the dark, with few eggs being discharged in the light. Release of eggs was elicited with eight practical salinity units (one PSU = 1 g sea salts l(-1)) and was inhibited by salinity levels > 32 PSU. Egg release was optimal at 23 degrees C, and was decreased by 72% in agitated seawater compared to unstirred seawater. Inhibitors of photosynthesis and ions channels suppressed egg release, indicating that this process was physiologically associated with photosynthetic activity and ion transport.
Resumo:
The relative compositions of bacterioplankton, phytoplankton, zooplankton and detritus of seston were studied during the course of inundation in a floodplain lake of central Changjiang (China). Peaks in bacterial biomass developed shortly after flooding, coinciding with the initial leaching of organic nutrients from vegetation submerged under floodwater, and again at high water, shortly before the climax of phytoplankton biomass. Rods predominated the bacterial carbon biomass. Phytoplankton developed a postflood bloom at initial falling, corresponding to the drainage of the lake water into the river. While minimal biomass occurred during the advent of flooding, most likely due to disturbance and dilution. Algal biomass was usually dominated by Chlorophyta. Highest biomass of zooplankton was recorded at the end of the flooding in connection with the decline in turbidity, and once again at early drainage, closely associated with high phytoplankton biomass. Copepods (mainly nauplii) always constituted the majority of zooplankton carbon biomass. Peaks in detrital carbon concentrations were recorded at rising and falling water phases, corresponding respectively to the riverine discharge and decomposition of macrophyte mats. At rising water phase, CPOC was abundant. While during other water phases, this predominance was shifted to FPOC alone. Taken together, average contribution of bacterioplankton, phytoplankton, zooplankton and detritus to total seston carbon was 3.29, 21.21, 6.83 and 68.67 %, respectively.
Resumo:
The bulge test is successfully extended to the determination of the fracture properties of silicon nitride and oxide thin films. This is achieved by using long diaphragms made of silicon nitride single layers and oxide/nitride bilayers, and applying comprehensive mechanical model that describes the mechanical response of the diaphragms under uniform differential pressure. The model is valid for thin films with arbitrary z-dependent plane-strain modulus and prestress, where z denotes the coordinate perpendicular to the diaphragm. It takes into account the bending rigidity and stretching stiffness of the layered materials and the compliance of the supporting edges. This enables the accurate computation of the load-deflection response and stress distribution throughout the composite diaphragm as a function of the load, in particular at the critical pressure leading to the fracture of the diaphragms. The method is applied to diaphragms made of single layers of 300-nm-thick silicon nitride deposited by low-pressure chemical vapor deposition and composite diaphragms of silicon nitride grown on top of thermal silicon oxide films produced by wet thermal oxidation at 950 degrees C and 1050 degrees C with target thicknesses of 500, 750, and 1000 mn. All films characterized have an amorphous structure. Plane-strain moduli E-ps and prestress levels sigma(0) of 304.8 +/- 12.2 GPa and 1132.3 +/- 34.4 MPa, respectively, are extracted for Si3N4, whereas E-ps = 49.1 +/- 7.4 GPa and sigma(0) = -258.6 +/- 23.1 MPa are obtained for SiO2 films. The fracture data are analyzed using the standardized form of the Weibull distribution. The Si3N4 films present relatively high values of maximum stress at fracture and Weibull moduli, i.e., sigma(max) = 7.89 +/- 0.23 GPa and m = 50.0 +/- 3.6, respectively, when compared to the thermal oxides (sigma(max) = 0.89 +/- 0.07 GPa and m = 12.1 +/- 0.5 for 507-nm-thick 950 degrees C layers). A marginal decrease of sigma(max) with thickness is observed for SiO2, with no significant differences between the films grown at 950 degrees C and 1050 degrees C. Weibull moduli of oxide thin films are found to lie between 4.5 +/- 1.2 and 19.8 +/- 4.2, depending on the oxidation temperature and film thickness.
Resumo:
The physics-based parameter: load/unload response ratio (LURR) was proposed to measure the proximity of a strong earthquake, which achieved good results in earthquake prediction. As LURR can be used to describe the damage degree of the focal media qualitatively, there must be a relationship between LURR and damage variable (D) which describes damaged materials quantitatively in damage mechanics. Hence, based on damage mechanics and LURR theory, taking Weibull distribution as the probability distribution function, the relationship between LURR and D is set up and analyzed. This relationship directs LURR applied in damage analysis of materials quantitatively from being qualitative earlier, which not only provides the LURR method with a more solid basis in physics, but may also give a new approach to the damage evaluation of big scale structures and prediction of engineering catastrophic failure. Copyright (c) 2009 John Wiley & Sons, Ltd.
Resumo:
The physics-based parameter: load/unload response ratio (LURR) was proposed to measure the proximity of a strong earthquake, which achieved good results in earthquake prediction. As LURR can be used to describe the damage degree of the focal media qualitatively, there must be a relationship between LURR and damage variable (D) which describes damaged materials quantitatively in damage mechanics. Hence, based on damage mechanics and LURR theory, taking Weibull distribution as the probability distribution function, the relationship between LURR and D is set up and analyzed. This relationship directs LURR applied in damage analysis of materials quantitatively from being qualitative earlier, which not only provides the LURR method with a more solid basis in physics, but may also give a new approach to the damage evaluation of big scale structures and prediction of engineering catastrophic failure. Copyright (c) 2009 John Wiley & Sons, Ltd.
Resumo:
Salt water intrusion occurred frequently during dry season in Modaomen waterway of the Pearl River Estuary. With the development of region's economy and urbanization, the salt tides affect the region's water supply more and more seriously in recent years. Regulation and allocation of freshwater resources of the upper rivers of the estuary to suppress the salt tides is becoming important measures for ensuring the water supply security of the region in dry season. The observation data analysis showed that the flow value at the Wuzhou hydrometric station on the upper Xijiang river had a good correlation with the salinity in Modaomen estuary. Thus the flow rate of Wuzhou has been used as a control variable for suppression of salt tides in Modaomen estuary. However, the runoff at Wuzhou mainly comes from the discharge of Longtan reservoir on the upper reaches of Xijiang river and the runoff in the interval open valley between Longtan and Wuzhou sections. As the long distance and many tributaries as well as the large non-controlled watershed between this two sections, the reservoir water scheduling has a need for reasonable considering of interaction between the reservoir regulating discharge and the runoff process of the interval open watershed while the deployment of suppression flow at Wuzhou requires longer lasting time and high precision for the salt tide cycles. For this purpose, this study established a runoff model for Longtan - Wuzhou interval drainage area and by model calculations and observation data analysis, helped to understand the response patterns of the flow rate at Wuzhou to the water discharge of Longtan under the interval water basin runoff participating conditions. On this basis, further discussions were taken on prediction methods of Longtan reservoir discharge scheduling scheme for saline intrusion suppression and provided scientific and typical implementation programs for effective suppression flow process at the Wuzhou section.
Resumo:
近年来,我国炼油行业发展迅速,炼油能力全世界第二,炼油行业已成为污染大户。本研究针对炼油废水生物处理中存在的稳定达标难、抗冲击负荷能力差、建设投资与运行成本高等问题,就菌剂强化处理炼油废水中试与工程应用展开了研究,以期为菌剂的工程应用与推广提供理论参考与技术支持;并以炼油废水中的主要特征污染物苯酚为研究对象,考察了不同浓度苯酚冲击下功能菌的响应机制,并以此为指导研制功能菌激活促进剂,考察其对功能菌生物学指标的调控效果,以期为废水生物处理有毒污染物冲击调控提供理论依据与技术支持。 中试研究表明,菌剂强化处理炼油废水,出水COD、NH4+-N 平均值为86.7、7.6 mg/L,其平均去除率较常规生物处理系统分别提高了35.47%、59.28%,其耐受COD、NH4+-N 容积负荷分别高达2.42、0.139kg/(m3·d),具有良好的耐冲击能力。工程应用研究表明,菌剂强化处理炼油废水,出水COD、NH4+-N 平均值分别为85.05、8.4mg/L,其去除率较常规生物处理系统提高了25.1%、28.7%,出水水质各项指标均达到了国家《污水综合排放标准GB 8978-1996》一级排放标准。技术经济分析表明,菌剂强化处理炼油废水在建设成本、运行成本上分别降低38%、49%,具有良好的技术经济优势。 苯酚冲击下功能菌响应机制研究表明:不同浓度苯酚冲击下,生物学指标生物量、脱氢酶酶活、1,2-双加氧酶酶活对冲击都有不同程度的响应,其响应敏感程度为脱氢酶酶活>生物量>1,2-双加氧酶酶活。1,2-双加氧酶酶活与COD 降解率相关性良好,可表征苯酚降解过程,确认为调控重点。以此为指导研制出苯酚降解功能菌抗冲击激活促进剂,可有效调控功能菌对有毒污染物苯酚的降解效果,1000mg/L 苯酚冲击下,经调控,其COD 去除率较对照提高20%,降解时间缩短16%以上。其对生物学指标的调控效果为1,2-双加氧酶酶活>生物量>脱氢酶酶活,验证了功能菌在苯酚冲击下的响应机制。研究表明菌剂强化处理炼油废水切实可行,具有良好的技术经济优势。有毒污染物冲击下废水生物处理系统响应机制研究为抗冲击调控提供了新的研究思路。 Currently, China’s oil refining industry is developing rapidly and has become the second largest all over the world. The oil refining industry is one of the major pollution industries in our country. The pilot scale study and engineering application research were conducted aiming at the problems in refining wastewater such as poor treatment stability and water quality, poor anti-shock capacity and expensive running cost, etc., so as to provide theoretical references and technological supports for the engineering application and popularization of microbial preparation in wastewater treatment. Also, the response mechanism of functional microbe under shock of different phenol concentrations, which is the main pollutants in refinery wastewater, was studied. Based on this result, functional microbe activation accelerator was developed, and the regulation effect of functional microbe biological index under phenol shocking were studied, in order to provide theoretical basis and technological support for regulation of toxic shocking of wastewater biological treatment. The result of pilot scale research indicated: for treatment of refinery wastewater in bioaugmention treatment system of microbial preparation, the COD and NH4+-N average value of effluent was 86.7 and 7.6 mg/L, Comparing with normal biological treatment system, the average removal rates of COD, NH4+-N increased 35.47%,59.28% separately by bioaugmention treatment system, which showed better anti-shocking capacity, the volumetric load r of COD and NH4+-N reached 2.42 kg/(m3·d) and 0.139 kg/(m3·d), respectively. The research on engineering application of refinery wastewater bioaugmentation treatment by microbial preparation indicated:the average concentrations of effluent COD and NH4+-N in the bioaugmentation treatment system were 85.05 and 8.4mg/L, which increased by 25.1% and 28.7% comparing with normal biological treatment system of refinery wastewater, And the effluent quality meets the first grade of discharging standard of National Integrated Wastewater Discharge Standard GB 8978-1996. The economic analysis of technology indicated: the demonstration project of bioaugmentation treatment of refinery wastewater by microbial preparation decreased by 38% in construction cost and 49% in running cost. This technology has economic benefits. The response mechanism of functional microbe under phenol shock indicated: biological index such as the biomass concentration, dehydrogenase and 1,2-dioxygenase had different responses under phenol shocking of different concentrations. The response sensitivity of different biological index under phenol shocking of different concentrations is: dehydogenase activity > biomass >1,2-dioxygenase activity, and high correlation of 1,2-dioxygenase and COD degradation percentage is achieved, thus 1,2-dioxygenase could be used to reflect the degradation situation of pollutants. So, 1,2-dioxygenase is the keypoint of regulation. The anti-shock activation accelerator of phenol degradation functional microbe was primarily developed. The results indicated: the activation accelerator could regulate the degradation effect of toxic substance-phenol by functional microbe effectively. For the functional microbe treatment system under phenol shocking of 1000mg/L, the COD degradation rate increased by 20% and the degradation time reduced by more than 16% under regulation of activation accelerator. The regulation effects of biological index are: 1,2-dioxygenase > biomass > dehydrogenase. In this way, the response mechanism of functional microbe under toxic shocking is verified. The result indicated: the augmented microbial preparation treatment of refinery wastewater is applicable. It has many technical and economical advantages. The research results of responses mechanism of wastewater treatment system on toxic pollutants would offer a new idea for regulation of anti-shock.
Resumo:
ROS (reactive oxygen species) take an important signalling role in angiogenesis. Although there are several ways to produce ROS in cells, multicomponent non-phagocytic NADPH oxidase is an important source of ROS that contribute to angiogenesis. In the present work, we examined the effects of H2O2 on angiogenesis including proliferation and migration in HUVECs (human umbilical vein endothelial cells), new vessel formation in chicken embryo CAM (chorioallantoic membrane) and endothelial cell apoptosis, which is closely related to anti-angiogenesis. Our results showed that H2O2 dose-dependently increased the generation of O-2(-) (superoxide anion) in HUVECs, which was suppressed by DPI (diphenylene iodonium) and APO (apocynin), two inhibitors of NADPH oxidase. H2O2 at low concentrations (10 mu M) stimulated cell proliferation and migration, but at higher concentrations, inhibited both. Similarly, H2O2 at 4 nmol/cm(2) strongly induced new vessel formation in CAM, while it suppressed at high concentrations (higher than 4 nmol/cm(2)). Also, H2O2 (200 similar to 500 mu M) could stimulate apoptosis in HUVECs. All the effects of H2O2 on angiogenesis could be suppressed by NADPH oxidase inhibitors, which suggests that NADPH oxidase acts downstream of H2O2 to produce O-2(-) and then to regulate angiogenesis. In summary, our results suggest that H2O2 as well as O-2(-) mediated by NADPH oxidase have biphasic effects on angiogenesis in vitro and in vivo.
Resumo:
A series of WO3/ZrO2 strong solid acid prepared under different conditions were studied. Their crystal structures, surface properties and acidities were determined by means of XRD, DTA-TG, H-2- TPR, Laser Raman and acidity measurements. The results revealed that ZrO2 in WO3/ZrO2 existed mainly in tetragonal phase, the addition of WO3 plays an important role to stabilize tetragonal phase of ZrO2 and thus the catalyst had a considerable surface area. WO3 in WO3/ZrO2 was dispersed and crystalized in WO3 crystalite on ZrO2 surface and partly reacted with ZrO2 to form the bond of Zr-O-W, which acts as the strong solid acid site. The catalytic properties of WO3/ZrO2 strong solid acid for alkylation of iso-butane with butene under the different conditions were investigated. They had a better reaction performance than other strong solid acids, a parallel relationship could be drawn between the catalytic activity and the amount of acid sites as well as the acidic strength of the catalysts.