988 resultados para LEG EXTENSORS
Resumo:
The principal objective of Leg 187 was to locate the Indian/Pacific mantle boundary by sampling and analyzing 8- to 28-Ma seafloor basalts to the north of the Australian Antarctic Discordance (AAD). In this paper we present Sr and Nd isotopic data from basaltic glasses recovered from the 13 sites drilled during Leg 187. Our data show that the boundary region is characterized by a gradual east-west increase in 87Sr/86Sr, with a corresponding decrease in 143Nd/144Nd across a 150-km-wide zone located east and west of the 127°E Fracture Zone. The Sr-Nd isotopic composition of glasses therefore confirms the general conclusions derived by the Leg 187 shipboard scientific party in that the mantle boundary follows a west-pointing, V-shaped depth anomaly that stretches across the ocean floor from the Australian to the Antarctic continental margins. We document that two systematic trends of covariation between 87Sr/86Sr and 143Nd/144Nd can be distinguished, suggesting that the basalts sampled during Leg 187 formed through the interaction of three contrasting source components: (1) a component that lies within the broad spectrum of Indian-type mantle compositions, (2) a boundary component, and (3) a Pacific-type mantle component. The variations in elemental and isotopic compositions indicate that the boundary component represents a distinct mantle region that is associated with the boundary between the Pacific and the Indian mid-ocean-ridge basalt (MORB) sources rather than a dispersed mantle heterogeneity that was preferentially extracted in the boundary region. However, the origin of the boundary component remains an open question. The three components are not randomly intermixed. The Indian and the Pacific mantle sources both interacted with the boundary component, but they seem not to have interacted directly with each other. Large local variability in isotopic compositions of lavas from the mantle boundary region demonstrates that magma extraction processes were unable to homogenize the isotopic contrasts present in the mantle source in this region. Systematic variations in rare earth element (REE) concentrations across the depth anomaly cannot be explained solely by variations in source composition. The observed variations may be explained by an eastward increase and westward decrease in the degree of melting toward the mantle boundary region, compatible with a cooling of the Pacific mantle and a heating of the Indian mantle toward the mantle boundary.
Resumo:
The basalts in Holes 519A, 522B, and 524 were studied for intensity of natural remanent magnetization, magnetic hysteresis, magnetic susceptibility, stability of isothermal remanence, and thermomagnetic behavior. Some of these properties are sensitive to both the composition and the microstructure of the magnetic minerals, others to composition only. Thus it is possible to separate the two effects and to trace the variation of effective magnetic grain size and degree of alteration within a lithologic unit or over a yet larger distance or time interval. The flow in Hole 519A is highly maghemitized at the top, the degree of maghemitization decreasing with depth in the flow. Effective grain size increases with increasing depth. Electron microprobe analysis of the titanomaghemite grains in these samples provides no support for the leaching out of iron during alteration. The pillows and flows in Hole 522B are distributed among a number of cooling units, and no systematic downhole variations are apparent. The inferred magneto-petrology is consistent with the cooling and alteration history that might be expected within the units. The upper and lower sills in Hole 524 are more uniform and have a larger concentration of well-developed magnetic mineral grains than the pillows and flows in Holes 519A and 522B. Maghemitization appears to have developed from the boundaries of the sills that are in contact with the sediments between the sills.