971 resultados para LASER POWER TRANSMISSION
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We demonstrate that a combination of Raman laser based amplification and optical phase conjugation enables transmission beyond the nonlinear-Shannon limit. We show nonlinear compensation of 7x114Gbit/s DP-QPSK channels, increasing system reach by 30%. © 2013 Optical Society of America.
Resumo:
We present experimental results for the effect of an increased supervisory signal power in a high-loss loopback supervisory system in an optically amplified wavelength division multiplexing (WDM) transmission line. The study focuses on the investigation of increasing the input power for the supervisory signal and the effect on the co-propagating WDM data signals using different channel spacing. This investigation is useful for determining the power limitation of the supervisory signal if extra power is needed to improve the monitoring. The study also shows the effect of spacing on the quality of the supervisory signal itself because of interaction with adjacent data signals. © The Institution of Engineering and Technology 2014.
Resumo:
For the first time, Fiber Bragg grating (FBG) structures have been inscribed in single-core passive germanate and three-core passive and active tellurite glass fibers using 800 nm femtosecond (fs) laser and phase mask technique. With fs peak power intensity in the order of 10(11)W/cm(2), the FBG spectra with 2nd and 3rd order resonances at 1540 and 1033 nm in the germanate glass fiber and 2nd order resonances at approximately 1694 and approximately 1677 nm with strengths up to 14 dB in all three cores in the tellurite fiber were observed. Thermal responsivities of the FBGs made in these mid-IR glass fibers were characterized, showing average temperature responsivity approximately 20 pm/ degrees C. Strain responsivities of the FBGs in germanate glass fiber were measured to be 1.219 pm/microepsilon.
Resumo:
We report the first experimental measurements on the spectral modification of type IA fibre Bragg gratings, incorporated in an optical network, which result from the use of high-power, near-infrared lasers. The fibre grating properties are modified in a controlled manner by exploiting the characteristics of the inherent 1400 nm absorption band of the optical fibre, which grows in strength during the type IA grating inscription. If the fibre network is illuminated with a high-power laser, having an emission wavelength coincident with the absorption band, the type IA centre wavelength and chirp can be modified. Furthermore, partial grating erasure is demonstrated. This has serious implications when using type IA gratings in an optical network, as their spectrum can be modified using purely optical methods (no external heating source acts on the fibre), and to their long-term stability as the grating is shown to decay. Conversely, suitably stabilized gratings can be spectrally tailored, for tuning fibre lasers or edge filter modification in sensing applications, by purely optical means. © 2006 IOP Publishing Ltd.
Resumo:
In this letter, we demonstrate an optically pumped semiconductor disk laser frequency doubled with a periodically poled lithium tantalate crystal. Crystals with various lengths were tested for intracavity frequency conversion. The semiconductor disk laser exploited GaInNAs-based active region with GaAsAlAs distributed Bragg mirror to produce emission at 1.2- μm wavelength. The frequency doubled power up to 760 mW at the wavelength of 610 nm was achieved with a 2-mm-long crystal. © 2010 IEEE.
Resumo:
In this letter, we demonstrate a broadly tunable InGaAsInP strained multiquantum-well external cavity diode laser, which operates in the spectral range of 14941667 nm. A maximum continuous-wave output power in excess of 81 mW and sidemode suppression ratio higher than 50 dB were achieved in the central part of the tuning range. Different pump current and temperature regimes are investigated. © 2006 IEEE.
Resumo:
A broadly tunable master-oscillator power-amplifier (MOPA) picosecond optical pulse source is demonstrated, consisting of an external cavity passively mode-locked laser diode with a tapered semiconductor amplifier. By employing chirped quantum-dot structures on both the oscillator's gain chip and amplifier, a wide tunability range between 1187 and 1283 nm is achieved. Under mode-locked operation, the highest output peak power of 4.39 W is achieved from the MOPA, corresponding to a peak power spectral density of 31.4 dBm/nm. © 1989-2012 IEEE.
Resumo:
Here we present a compact tunable all-room-temperature frequency-doubling scheme, using a periodically poled potassium titanyl phosphate (PPKTP) waveguide and a QD-ECDL. A broad wavelength tunability of the second harmonic generated light (SHG) in the spectral region between 567.7 and 629.1 nm was achieved, with maximum conversion efficiencies in range of 0.34%-7.9%. The maximum output power for the SHG light was 4.11 mW at 591.5 nm, achieved for 52 mW of launched pump power at 1183 nm, resulting in a conversion efficiency of 7.9%.
Resumo:
Here we present a compact all-room-temperature frequency-doubling scheme generating orange light, using a PPKTP waveguide and a quantum-dot external cavity diode laser (QD-ECDL). The maximum output power for the second harmonic generated light (SHG) was 1.43 mW at 613 nm, achieved for 70 mW of launched pump power at 1226 nm. This represents an important step towards a compact and wall-plug-efficient coherent orange light source, operating at room temperature.
Resumo:
Compact CW lasers in the visible spectral region are of great importance for vast number of applications including biophotonics, photomedicine, spectroscopy and confocal microscopy. Currently, commercially available lasers of this spectral region are bulky, expensive and inconvenient in use. Also, there is a lack of diode lasers emitting in the visible spectral range, particularly in the yellow region, where a range of important fluorescent probes are optimally excited. An attractive way to realize a compact yellow laser source is second harmonic generation (SHG) in a periodically poled nonlinear crystal containing a waveguide which allows high-efficient frequency conversion even at moderate power level. In this respect, periodically poled lithium niobate (PPLN) waveguided crystal is one of the best candidates for efficient SHG. In recent years, the progress made with the fabrication of good quality waveguides in PPLN crystals in combination with availability of low-cost, good quality semiconductor diode lasers, offering the coverage of a broad spectral range between 1 µm and 1.3 µm, allows compact CW laser sources in the visible spectral region to be realized.
Resumo:
Broadband wavelength tunability over 136 nm (between 1182.5 nm and 1319 nm) of picosecond pulses in passive mode-locked regime is demonstrated in a multi-section quantum-dot laser in external cavity configuration at room temperature. The maximum peak power of 870 mW with 15 ps pulse duration was achieved at 1226 nm wavelength. © 2012 American Institute of Physics.
Resumo:
A compact all-room-temperature frequency-doubling scheme generating cw orange light with a periodically poled potassium titanyl phosphate waveguide and a quantum-dot external cavity diode laser is demonstrated. A frequency-doubled power of up to 4.3 mW at the wavelength of 612.9 nm with a conversion efficiency exceeding 10% is reported. Second harmonic wavelength tuning between 612.9 nm and 616.3 nm by changing the temperature of the crystal is also demonstrated. © Springer-Verlag 2010.
Resumo:
A broadly tunable quantum-dot based ultra-short pulse master oscillator power amplifier with different diffraction grating orders as an external-cavity resonance feedback is studied. A broader tuning range, narrower optical spectra as well as higher peak power spectal density (maximun of 1.37 W/nm) from the second-order diffraction beam are achieved compared to those from the first-order diffraction beam in spite of slightly broader pulse duration from the secondorder diffraction. © The Institution of Engineering and Technology 2013.
Resumo:
The lensing effects in diode end-pumped Yb:YAG laser rods and discs are studied. Two mechanisms of refractive-index changes are taken into account, thermal and electronic (due to the difference between the excited- and ground-state Yb polarisabilities), as well as pump-induced deformation of the laser crystal. Under pulsed pumping, the electronic lensing effect prevails over the thermal one in both rods and discs. In rods pumped by a highly focused cw beam, the dioptric power of the electronic lens exceeds that of the thermal lens, whereas in discs steady-state lensing is predominantly due to the thermal mechanism. © 2009 Kvantovaya Elektronika and Turpion Ltd.