966 resultados para Kinases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Men with localized prostate cancer (PCa) have a 100% five-year survival rate, but this rate drops to 33% for men with metastatic disease. A better understanding of the metastatic process is needed to develop better therapies for PCa. Aberrant activation of protein tyrosine kinases, including Src Family Kinases (SFKs) contribute to metastasis through numerous functions, one of which leads to increased expression of cytokines, such as IL-8. However, the relationship between Src activity and IL-8 regulation is not completely understood. In cell line models, I determined that IL-8 activates Src and in turn Src activates IL-8 demonstrating a feed forward loop contributing to the migration and invasion of PCa cells. However, IL-8 is also produced by tumor-associated stromal cells. In bone marrow derived stromal cells (HS5), I demonstrated a feed forward loop occurs as was observed in tumor cells. HS5 conditioned media increased Src activity in PCa cells. By silencing IL-8 in HS5 cells, Src activity was decreased to control levels in PCa cells as was migration and invasion. Thus, stromal cells producing IL-8 contribute to metastatic properties of PCa by a paracrine mechanism. To examine the effect of stromal cells on tumor growth and metastatic potential of PCa in vivo, I mixed HS5 and PCa cells and co-injected them intraprostatically. I determined that tumor growth and metastases were increased. By silencing IL-8 in HS5 cells and co-injecting them with PCa cells intraprostatically, tumor growth and metastases were still increased relative to injection of PCa cells alone, but decreased relative to co-injections with PCa cells and HS5 cells. These studies demonstrated: (1) a feed forward loop in both tumor and stromal cells, whereby IL-8 activates Src, derepressing IL-8 expression in PCa cells in vitro; (2) stromal produced IL-8 activates Src and contributes to the migration and invasion of PCa cells in vitro; and (3) stromal produced IL-8 is responsible, in part, for increases in PCa tumor growth and metastatic potential. Together, these studies demonstrated that IL-8-mediated Src activity increases the metastatic potential of PCa and therapeutic agents interfering with the IL-8/SFK signaling axis may be useful for prevention and treatment of metastases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proviral integration site for Moloney murine leukemia virus (Pim) kinases are Ser/Thr/Tyr kinases. They modulate B-cell development but become oncoproteins and promote cancer development once overexpressed. Containing three isoforms, Pim-1, -2 and -3 are known to phosphorylate various substrates that regulate transcription, translation, cell cycle, and survival pathways in both hematological and solid tumors. Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Elevated Pim kinase levels are common in MCL, and it negatively correlates with patient outcome. SGI-1776 is a small molecule inhibitor selective for Pim-1/-3. We hypothesize that SGI-1776 treatment in MCL will inhibit Pim kinase function, and inhibition of downstream substrates phosphorylation will disrupt transcriptional, translational, and cell cycle processes while promoting apoptosis. SGI-1776 treatment induced moderate to high levels of apoptosis in four MCL cell lines (JeKo-1, Mino, SP-53 and Granta-519) and peripheral blood mononuclear cells (PBMCs) from MCL patients. Phosphorylation of transcription and translation regulators, c-Myc and 4E-BP1 declined in both model systems. Additionally, levels of short-lived Mcl-1 mRNA and protein also decreased and correlated with decline of global RNA synthesis. Collectively, our investigations highlight Pim kinases as viable drug targets in MCL and emphasize their roles in transcriptional and translational regulation. We further investigated a combination strategy using SGI-1776 with bendamustine, an FDA-approved DNA-damaging alkylating agent for treating non-Hodgkin’s lymphoma. We hypothesized this combination will enhance SGI-1776-induced transcription and translation inhibition, while promoting bendamustine-triggered DNA damage and inducing additive to synergistic cytotoxicity in B-cell lymphoma. Bendamustine alone resulted in moderate levels of apoptosis induction in MCL cell lines (JeKo-1 and Mino), and in MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. An additive effect in cell killing was observed when combined with SGI-1776. Expectedly, SGI-1776 effectively decreased global RNA and protein synthesis levels, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. In combination, intensified inhibitory effects in DNA, RNA and protein syntheses were observed. Together, these data suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma, and provided foundation of their mechanism of actions in lymphoma cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Akt (also known as protein kinase B) serves a central regulator in PI3K/Akt signaling pathways to regulate numerous physiological functions including cell proliferation, survival and metabolism. Akt activation requires the binding of Akt to phospholipid PIP3 on the plasma membrane and subsequent phosphorylation of Akt by its kinases. Growth factor-mediated membrane recruitment of Akt is a crucial step for Akt activation. However, the mechanism of Akt membrane translocation is unclear. Protein ubiquitination is a significant posttranslational modification that controls many biological functions such as protein trafficking and signaling activation. Therefore, we hypothesize that ubiquitination may be involved in Akt signaling activation. We have demonstrated that Akt could be conjugated with non-proteolytic K63-linked ubiquitination by TRAF6 ubiquitin E3 ligase. This modification on Akt was required for membrane recruitment, phosphorylation and activation of Akt in response to growth factor stimulation. The human cancer-associated Akt E17K mutant exhibited an increase in K63-linked ubiquitination, which contributes to the enrichment of membrane recruitment and phosphorylation of Akt. Thus, we conclude that K63-linked ubiquitination is a critical step for oncogenic Akt activation and also involved in human cancer development. Notably, the process of protein ubiquitination can be reversed by deubiquitinating enzymes (DUBs), which play a critical role to terminate signaling activation induced by ubiquitination. To further investigate how ubiquitination cycles regulate Akt activation, we have identified that CYLD as a DUB for Akt, and CYLD inhibited growth factor-induced ubiquitination and activation of Akt. Under serum-depletion condition, CYLD interacts with Akt and keep Akt under inactive state by directly removing K63-linked ubiquitination of Akt. CYLD disassociates with Akt upon growth factor stimulation, thereby allowing E3 ligases to induce ubiquitination and activation of Akt. We also demonstrated that CYLD deficiency promoted cancer cell proliferation, survival, glucose metabolism and human prostate cancer development. Therefore, we conclude that CYLD plays a critical role for negatively regulating Akt signaling activation through deubiquitination of Akt. In summary, this study delineated the important mechanism of cycles of ubiquitination and deubiquitination of Akt in regulating membrane translocation and activation of Akt, and TRAF6 and CYLD as central switches for these processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High voltage-activated (HVA) calcium channels from rat brain and rabbit heart are expressed in Xenopus laevis oocytes and their modulation by protein kinases studied. A subtype of the HVA calcium current expressed by rat brain RNA is potentiated by the phospholipid- and calcium-dependent protein kinase (PKC). The calcium channel clone $\alpha\sb{\rm1C}$ from rabbit heart is modulated by the cAMP-dependent protein kinase (PKA), and another factor present in the cytoplasm.^ The HVA calcium channels from rat brain do not belong to the L-type subclass since they are insensensitive to dihydropyridine (DHP) agonists and antagonists. The expressed currents do contain a N-type fraction which is identified by inactivation at depolarized potentials, and a P-type fraction as defined by blockade by the venom of the funnel web spider Agelenopsis Aperta. A non N-type fraction of this current is potentiated, by using phorbol esters to activate PKC. This residual fraction of current resembles the newly described Q-type channel from cerebellar granule cells in its biophysical properties, and potentiation by activation of PKC.^ The $\alpha\sb{\rm1C}$ clone from rabbit heart is expressed in oocytes and single-channel currents are measured using the cell-attached and cell-excised patch clamp technique. The single-channel current runs down within two minutes after patch excision into normal saline bath solution. The catalytic subunit of PKA + MgATP is capable of reversing this rundown for over 15 minutes. There also appears to be an additional factor present in the cytoplasm necessary for channel activity as revealed in experiments where PKA failed to prevent rundown.^ These data are important in that these types of channels are involved in synaptic transmission at many different types of synapses. The mammalian synapse is not accessible for these types of studies, however, the oocyte expression system allows access to HVA calcium channels for the study of their modulation by phosphorylation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term potentiation (LTP) is a rapidly induced and long lasting increase in synaptic strength and is the leading cellular model for learning and memory in the mammalian brain. LTP was first identified in the hippocampus, a structure implicated in memory formation. LTP induction is dependent on postsynaptic Ca2+ increases mediated by N-methyl-D-aspartate (NMDA) receptors. Activation of other postsynaptic routes of Ca2+ entry, such as voltage-dependent Ca2+ channels (VDCCs) have subsequently been shown to induce a long-lasting increase in synaptic strength. However, it is unknown if VDCC-induced LTP utilized similar cellular mechanisms as the classical NMDA receptor-dependent LTP and if these two forms of LTP display similar properties. This dissertation determines the similarities and differences in VDCC and NMDA receptor-dependent LTP in area CA1 of hippocampal slices and demonstrates that VDCCs and NMDA receptors activate similar cellular mechanisms, such as protein kinases, to induce LTP. However, VDCC and NMDA receptor activated LTP induction mechanisms are compartmentalized in the postsynaptic neuron, such that they do not interact. Consistent with activation properties of NMDA receptors and VDCCs, NMDA receptor and VDCC-dependent LTP have different induction properties. In contrast to NMDA-dependent LTP, VDCC-induced potentiation does not require evoked presynaptic stimulation or display input specificity. These results indicate that there are two different routes of postsynaptic Ca2+ which can induce LTP and the compartmentation of VDCCs and NMDA receptors and/or their resulting Ca2+ increases may account for the distinction between these LTP induction mechanisms.^ One of the molecular targets for postsynaptic Ca2+ that is required for the induction of LTP is protein kinases. Evidence for the role of protein kinase activity in LTP expression is either correlational or controversial. We have utilized a broad range and potent inhibitors of protein kinases to systematically examine the temporal requirement for protein kinases in the induction and expression of LTP. Our results indicate that there is a critical period of persistent protein kinase activity required for LTP induction activated by tetanic stimulation and extending until 20 min after HFS. In addition, our results suggest that protein kinase activity during and immediately after HFS is not sufficient for LTP induction. These results provide evidence for persistent and/or Ca2+ independent protein kinase activity involvement in LTP induction. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signal transduction pathways operative in lymphokine activated killer (LAK) cells during execution of cytolytic function have never been characterized. Based on ubiquitous involvement of protein phosphorylation in activation of cytolytic mechanisms used by CTL and NK cells, it was hypothesized that changes in protein phosphorylation should occur when LAK encounter tumor targets. It was further hypothesized that protein kinases would regulate LAK-mediated cytotoxicity. Exposure to either SK-Mel-1 (melanoma) or Raji (lymphoma) targets consistently led to increased phosphorylation of two 65-kD LAK proteins pp65a and -b, with isoelectric points (pI) of 5.1 and 5.2 respectively. Increased p65 phosphorylation was initiated between 1 and 5 min after tumor coincubation, occurred on Ser residues, required physical contact between LAK and tumors, correlated with target recognition, and also occurred after crosslinking Fc$\gamma$RIIIA in the absence of tumors. Both pp65a and -b were tentatively identified as phosphorylated forms of the actin-bundling protein L-plastin, based on pI, molecular weight, and cross-reactivity with specific antiserum. The known biochemical properties of L-plastin suggest it may be involved in regulating adhesion of LAK to tumor targets. The protein tyrosine kinase-specific inhibitor Herb A did not block p65 phosphorylation, but blocked LAK killing of multiple tumor targets at a post-binding stage. Greater than 50% inhibition of cytotoxicity was observed after a 2.5-h pretreatment with 0.125 $\mu$g/ml Herb A. Inhibition occurred over a period in pretreatment which LAK were not dependent upon IL-2 for maintenance of killing activity, supporting the conclusion that the drug interfered with mobilization of cytotoxic function. Granule exocytosis measured by BLT-esterase release from LAK occurred after coincubation with tumors, and was inhibited by Herb A LAK cytotoxicity was dependent upon extracellular calcium, suggesting that granule exocytosis rather than Fas ligand was the principal pathway leading to target cell death. The data indicate that protein tyrosine kinases play a pivotal role in LAK cytolytic function by regulating granule exocytosis, and that tumor targets can activate an adhesion dependent Ser kinase pathway in LAK resulting in phosphorylation of L-plastin. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overexpression and/or amplification of HER2/neu is frequently detected in many human cancers. Activation of p185 tyrosine kinase can be achieved by point mutation, overexpression, deletion, and heterodimerization with other class I receptors. In this study I investigated the signal transduction pathways mediating the oncogenic signal of the point mutation-activated rat p185. I demonstrated that tyrosine phosphorylation of Shc and formation of Shc/Grb2 complex correlated to the transformation of NIH3T3 cells caused by the point mutation-activated rat HER2/neu. Furthermore, I observed that association with Shc was severely impaired by deletion of most of the major autophosphorylation sites of the point-mutated p185. The truncated p185 product, however, fully retained its ability to transform NIH3T3 cells, induce Shc tyrosine phosphorylation and Shc/Grb2 complex formation. These results suggest that tyrosine phosphorylation of Shc which allows formation of Shc/Grb2 complex may play an important role in cell transformation induced by the point mutation-activated p185, and that stable binding to mutant p185 may not be necessary for Shc to mediate this signaling pathway.^ Recent studies have suggested that formation of the complex containing Sos, Grb2 and Shc is important in coupling receptor tyrosine kinases to the Ras signaling pathway. To clarify the role of this trimer in the oncogenic signaling of the activated p185, I set out to interfere with the protein-protein interactions in Shc/Grb2/Sos complex by introducing Grb2 mutants with deletions in either amino- ($\Delta$N-Grb2) or carboxyl- ($\Delta$C-Grb2) terminal SH3 domains into B104-1-1 cells derived from NIH3T3 cells that express the point mutation-activated HER-2/neu. I found that the transformed phenotypes of the B104-1-1 cells were largely reversed by expression of the $\Delta$N-Grb2. The effect of the $\Delta$C-Grb2 on phenotypic reversion was much weaker. Biochemical analysis showed that the $\Delta$N-Grb2 was able to associate Shc but not the activated p185 nor Sos, while the $\Delta$C-Grb2 bound to Shc, the activated p185, and Sos. The p185-mediated Ras activation was severely inhibited by the $\Delta$N-Grb2 but not the $\Delta$C-Grb2. Taken together, these data demonstrate that interruption of the interaction between Shc and the endogenous Grb2 by the $\Delta$N-Grb2 is able to impair the oncogenic signaling of the mutation-activated p185, indicating that (i) the $\Delta$N-Grb2 functions as a strong dominant-negative mutant, (ii) Shc/Grb2/Sos pathway plays a major role in mediating the oncogenic signal of the mutation-activated p185. Unlike the $\Delta$N-Grb2, the $\Delta$C-Grb2 appears to be a relatively weak dominant-negative mutant, probably due to its ability to largely fulfill the biological functions of the wild-type Grb2. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catenins were first characterized as linking the cytoplasmic domains of cadherin cell-cell adhesion molecules to the cortical actin cytoskeleton. In addition to their essential role in modulating cadherin adhesion, catenins have more recently been indicated to participate in cell and developmental signaling pathways. $\beta$-catenin, for example, associates directly with receptor tyrosine kinases and transcription factors such as LEF-1/TCF, and tranduces developmental signals within the Wnt pathway. $\beta$-catenin also appear to a role in regulating cell proliferation via its interaction with the tumor supressor protein APC. I have employed the yeast two-hybrid method to reveal that fascin, a bundler of actin filaments, binds to $\beta$-catenin's central Armadillo-repeat domain. The $\beta$-catenin-fascin interaction exists in cell lines as well as in animal brain tissues as revealed by immunoprecipitation analysis, and substantiated in vitro with purified proteins. Fascin additionally binds to plakoglobin, which contains a more divergent Armadillo-repeat domain. Fascin and E-cadherin utilize a similar binding-site within $\beta$-catenin, such that they form mutually exclusive complexes with $\beta$-catenin. Fascin and $\beta$-catenin co-localize at cell-cell borders and dynamic cell leading edges of epithelial and endothelial cells. Total immunoprecipitable b-catein has several isoforms, only the hyperphosphorylated isoform 1 associated with fascin. An increased $\beta$-catenin-fascin interaction was observed in HGF stimulated cells, and in Xenopus embryos injected with src kinase RNAs. The increased $\beta$-catenin association with fascin is correlated with increased levels of $\beta$-catenin phosphorylation. $\beta$-catenin, but not fascin, can be readily phosphorylated on tyrosine in vivo following src injection of embryos, or in vitro following v-src addition to purified protein components. These observations suggest a role of $\beta$-catenin phosphorylation in regulating its interaction with fascin, and src kinase may be an important regulator of the $\beta$-catenin-fascin association in vivo. The $\beta$-catenin-fascin interaction represents a novel catenin complex, that may conceivably regulate actin cytoskeletal structures, cell adhesion, and cellular motility, perhaps in a coordinate manner with its functions in cadherin and APC complexes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterotrimeric GTP-binding proteins, G proteins, are integral components of eukaryotic signaling systems linking extracellular signals to intracellular responses. Through coupling to seven-transmembrane helix receptors, G proteins convey primary signaling events into multi-leveled cascades of intracellular activity by regulating downstream enzymes, collectively called effectors. The effector enzymes regulated by G proteins include adenylyl cyclase, cAMP phosphodiesterase, phospolipase C-β, mitogen-activated protein kinases, and ion channels. ^ Neurospora crassa is a multicellular, filamentous fungus that is capable of both asexual and sexual reproduction by elaboration of specialized, developmentally controlled structures that give rise to either asexual or sexual spores, respectively. N. crassa possesses at least three heterotrimeric Gα proteins (GNA-1–3) and one Gβ subunit (GNB-1). GNA-1 was the first microbial protein that could be classified in the Gαi superfamily based on its amino acid identity and demonstration that it is a substrate for ADP-ribosylation by pertussis toxin. ^ Experiments were designed to identify the signal transduction pathways and the effector enzymes regulated by GNA-1. Targeted gene-replacement of gna-1 revealed that GNA-1 controls multiple developmental pathways including both asexual and sexual reproduction, maintenance of growth, and resistance to osmotic stress. The Gαi and Gαz members of the Gαi superfamily negatively regulate adenylyl cyclase activity in mammalian cells; therefore, adenylyl cyclase and cAMP levels were measured in Δgna-1 strains and also in strains that were deleted for both gna-1 and gna-2, a second Gα in N. crassa shown to have overlapping functions with GNA-1. Direct measurements of adenylyl cyclase activity revealed that GNA-1, but not GNA-2, was responsible for GTP-stimulated adenylyl cyclase activity in N. crassa. Furthermore, anti-GNA-1 IgG could specifically inhibit GTP-stimulated adenylyl cyclase activity in wild-type strain extracts. These studies also provided evidence that N. crassa possesses feedback mechanisms that control steady-state cAMP levels through indirect regulation of cAMP-phosphodiesterase activity; mutations in gna-1 and gna-2 were additive in their effect on lowering cAMP-phosphodiesterase activity under growth conditions where steady-state cAMP levels were normal but GTP-stimulated adenylyl cyclase activity was reduced 90% in comparison to control strains. ^ Genetic and biochemical epistasis experiments utilizing a Δ gna-1 cr-1 mutant suggest that GNA-1 is essential for female fertility in a cAMP-independent pathway. Furthermore, deletion of gna-1 in a cr-1 background exacerbated many of the defects already observed in the cr-1 strain including more severe growth restriction and developmental defects. However, deletion of gna-1 had no effect on the increased thermotolerance of cr-1, which has been attributed to loss of cAMP. cr-1 possesses GNA-1 protein, and crude membrane fractions from this strain reconstituted GTP-stimulated adenylyl cyclase activity in Δgna-1 membrane fractions. These studies provide direct evidence for the involvement of Gα proteins in the regulation of adenylyl cyclase activity in eukaryotic microbes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shc proteins are implicated in coupling receptor tyrosine kinases to the mitogen-activated protein kinase (MAPK) pathway by recruiting Grb2/SOS to the plasma membrane. To better understand the role of Shc in oncogenesis brought about by point mutation activated neu (p185*), we transfected a Shc mutant (ShcΔCH1), which lacks the Grb2 binding site Y317 by deletion of collagen-homology domain 1, into p185*-transformed NIH3T3 cells. The cellular transformation phenotypes were found to be largely suppressed by expression of ShcΔCH1. This study indicates that Shc plays a critical role in mediating the oncogenical signals of p185*. Although ShcΔCH1 still retained another Grb2 binding site (Y239/240), we did not detect its physical association with Grb2. We also found that ShcΔCH1 could associate with p185*; however, this association did not interfere with the endogenous Shc-p185* interaction or the Shc-Grb2 interaction. In addition, p185*-mediated MAPK/Elk activation, PI3-K activation and Src activation likewise was not inhibited by ShcΔCH1 expression. Taken together, our current study clearly indicates that ShcΔCH1 suppresses the p185*-induced transformation, and that this suppression is mediated through a MAPK-independent and possibly PI3-K, Src-independent pathway. These results suggest that Shc may be involved in other unidentified signal pathways which are critical for p185*-induced cellular transformation besides the three pathways that we have studied. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SHP1 is a cytosolic protein tyrosine phosphatase that contains two SH2 domains. It is highly expressed in hematopoietic cells and expressed in normal epithelium at lower levels. While SHP1 in hematopoietic cells is thought to be a negative regulator of cellular signaling by associating with and dephosphorylating various receptors and their downstream effectors after they become activated, its precise function in epithelium remains to be understood. The potential involvement of SHP1 in human tumorigenesis has been hypothesized from the findings that SHP1 can interact with, dephosphorylate, and regulate the activity of several protein tyrosine kinases (PTKs) implicated in human cancer. These PTKs include epidermal growth factor receptor (EGFR) and Src. Such speculation is also supported by the report that SHP1 is overexpressed in human ovarian cancers. ^ Here we report, for the first time, that the levels of SHP1 expression and activity are altered in human breast cancer cells in comparison with normal breast epithelium. In particular, SHP1 expression is nearly lost in the breast cancer cell lines MDA-MB231 and MDA-MB435. After the re-introduction of SHP1 both in wild type (wt) and enzymatically inactive (dn) forms, into the MDA-MB231 cells, we observed no changes in cellular proliferation. However, the overexpression of wt SHP1 led to increased anchorage-independent growth in the MDA-MB231 cells. SHP1 phosphatase activity is essential for such an increase since the overexpression of dn SHP1 had no effect. Enhanced turnorigenicity in nude mice was also observed in the MDA-MB231 cells overexpressing wt SHP1, but not dn SHP1, suggesting the crucial function of SHP1 enzymatic activity in this process. Our observations in this study indicate that SHP1 promotes tumorigenesis by a mechanism or mechanisms apart from enchancing angiogenesis. In addition, we have found no evidence that the overexpression of SHP1 could affect metastatic potential in the MDA-MB231 cells. ^ In the MDA-MB231 cells stably transfected with either wt or dn SHP1 the peak level of EGFR tyrosine phosphorylation induced by EGF, as well as the sensitivity to EGF stimulation, was not altered. However, the overexpression of wt SHP1 led to a slight increase in the kinetics of EGFR dephosphorylation, whereas the overexpression of dn SHP1 led to slightly delayed kinetics of EGFR dephosphorylation. The overexpression of either the wt or dn SHP1 did not lead to any significant increase in Src kinase activity. ^ In NIH3T3 cells, the transient overexpression of SHP1 led to no significant changes in MAP kinase (ERK2) activation by EGF or Akt activation by PDGF. In 3T3H4 cells, the transient overexpression of SHP1 led to no significant changes in MAP kinase (ERK2) activation by heregulin. The transient overexpression of wt SHP1 in the MDA-MB231 cells caused an apparent increase, ranging from 10% to 20%, in the G0/G1 population of the cells with a corresponding decrease in the S phase population. ^ In order to understand the mechanisms by which SHP1 exerts its positive effect on the tumorigenic potential of the MDA-MB231 cells, we employed two-dimensional electrophoresis in an attempt to identify cellular protein(s) with significantly altered tyrosine phosphorylation level upon wt SHP1 overexpression. The overexpression of wt SHP1 but not dn SHP1, leads increased tyrosine phosphorylation of a protein with a molecular weight of approximately 40 kDa and a pI between 5.9 to 6.6. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adenovirus type 5 E1A (abbreviated E1A) has previously been known as an immortalization oncogene because E1A is required for transforming oncogenes, such as ras and E1B, to transform cells in primary cultures. However, E1A has also been shown to downregulate the overexpression of the Her-2/neu oncogene, resulting in suppression of transformation and tumorigenesis induced by that oncogene. In addition, E1A is able to promote apoptosis induced by anticancer drugs, irradiation, and serum deprivation. Many tyrosine kinases, such as the EGF receptor, Her-2/Neu, Src, and Axl are known to play a role in oncogenic signals in transformed cells. To study the mechanism underlying the E1A-mediated tumor-suppressing function, we exploited a modified tyrosine kinase profile assay (Proc. Natl. Acad. Sci, 93, 5958–5962, 1996) to identify potential tyrosine kinases regulated by E1A. RT-PCR products were synthesized with two degenerate primers derived from the conserved motifs of various tyrosine kinases. A tyrosine kinase downregulated by E1A was identified as Axl by analyzing the Alu I-digested RT-PCR products. We isolated the DNA fragment of interest, and found that E1A negatively regulated the expression of the transforming receptor tyrosine kinase Axl at the transcriptional level. To study whether downregulation of the Axl receptor is involved in E1A-mediated growth suppression, we transfected axl cDNA into E1A-expressing cells (ip1-E1A) to establish cells that overexpressed Axl (ip1-E1A-Axl). The Axl ligand Gas6 triggered a greater mitogenic effect in these ip1-E1A-Axl cells than in the control cells ip1-E1A and protected the Axl-expressing cells from serum deprivation-induced apoptosis. Further study showed that Akt is required for Axl-Gas6 signaling to prevent ip1-E1A-Axl cells from serum deprivation-induced apoptosis. These results indicate that downregulation of the Axl receptor by E1A is involved in E1A-mediated growth suppression and E1A-induced apoptosis, and thereby contributes to E1A's anti-tumor activities. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overexpression of c-erbB-2 gene-encoded p185 has been correlated with lymph node metastasis and poor prognosis in breast cancer patients. To investigate whether overexpression of c-erbB-2 can enhance metastatic potential of human breast cancer cells, we compared the metastatic phenotypes of the parental MDA-MB-435 cells and the c-erbB-2 gene transfected 435.eB cells. In vivo experimental metastasis assays demonstrated that mice injected erbB2-overexpressing 435.eB transfectants formed significantly more metastatic tumors than the mice injected with parental and control cells. The changes in metastatic potential in vivo were accompanied by increased invasiveness in vitro . The transfectants and the parental cells all had similar growth rates and transformation potential. These findings suggest that c- erbB-2 gene can enhance the intrinsic metastatic potentials of MDA-MB-435 cells without increasing their transformation abilities. ^ Homophilic adhesion may affect invasive and metastatic potential of tumor cells. We found that Heregulin-β1 (HRG-β1), a growth factor that activates receptor kinases erbB3 and erbB4, can enhance aggregation of MCF-7 and SKBR3 human breast cancer cells. While investigating the downstream signals involved in HRG-β1-increased cell aggregation, we observed that HRG-β1 increased the kinase activities of extracellular signal-regulated protein kinase (ERK) and PI3K in these cells. By using different kinase inhibitors, we found that the HRG-β1-activated MEK1-ERK pathway has no demonstrable role in the induction of cell aggregation, whereas HRG-β1-activated PI3K is required for enhancing breast cancer cell aggregation. These results have provided one mechanism by which HRG-β1-activated signaling of erbB receptors may affect invasive/metastatic properties of breast cancer cells. ^ To identify the structural motifs within the erbB2 receptor that are required for erbB2 increased metastatic potential in breast cancer cells, we injected different forms of mutated erbB2 expressing MDA-MB-435 cell line transfectants with or without the EGF-like domain of heregulin-β1 protein (HRG/egf) into ICR-SCID mice to test the metastatic survival rate. The results show that an intact kinase domain of erbB2 receptor is required for erbB2 enhanced metastatic potential in these cells. The C-terminal tyrosine 1248 residue of erbB2 may also play a role in enhancing metastatic potential. Moreover, the results suggest that HRG/egf promote the metastatic potential of human breast cancer cells in vivo. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphatidylinositol 3-kinase (PI3K) phosphorylates membrane constituent phosphatidylinositols, producing second messengers that link membrane bound receptor signals to cellular proliferation and survival. PI3K, a heterodimer consisting of a catalytic p110 subunit and a regulatory p85 subunit, can be activated through induced association with other signaling molecules. The p85 subunit serves to both stabilize and inactivate p110. The inhibitory activity of P85 is relieved by occupancy of the N terminal SH2 domain by phosphorylated tyrosine. PI3K becomes phosphorylated and activated subsequent to a variety of stimuli. Indeed, Src family kinases have been demonstrated to phosphorylate p85 at tyrosine 688, but the role of phosphorylation in PI3K function is unclear. We decided to evaluate the importance of tyrosine phosphorylation to PI3K activity. We demonstrate that tyrosine phosphorylated p85 is associated with a higher specific activity than is non-phosphorylated PI3K. Wild type p85 inhibits PI3K enzyme activity, a process accentuated by mutation of tyrosine 688 to alanine and reversed by mutation to aspartate which functions as a phosphotyrosine mimic in multiple systems. Strikingly, the Y688D mutation completely reverses the p85 inhibitory activity on cell viability and activation of downstream protein NFkB. We demonstrate that tyrosine phosphorylated Y688 or Y688D is sufficient to bind the p85 N terminal SH2 domain, either within full length p85 or in an isolated N terminal SH2 domain, suggesting the possibility of an intramolecular interaction between phosphorylated Y688 and the p85 N terminal SH2 domain that can relieve the p85-induced inhibition of p110. Further, we provide evidence that dephosphorylation of Y688 reduces phosphorylation-induced PI3K activity. We demonstrate that tyrosine phosphatase SHP-1 can physically associate with p85 in a SH2-mediated interaction with the C terminal tail of SHP-1. This association is concomitant with both p85 dephosphorylation and decreased PI3K activity. Altogether, our data suggests the phosphorylation state of p85 is the focal point of a novel mechanism for PI3K activity regulation. As PI3K has been shown to be involved in the vital physiological processes of cell proliferation and apoptosis, a thorough understanding of the regulation of this signaling protein may provide opportunities for the design of novel treatments for cancer. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA-directed nucleoside analogues, such as ara-C, fludarabine, and gemcitabine, are antimetabolites effective in the treatment of a variety of cancers. However, resistance to nucleoside analogue-based chemotherapy in treatments is still a major problem in therapy. Therefore, it is essential to develop rationales for optimizing the use of nucleoside analogues in combination with other anticancer drugs or modalities such as radiation. The present study focuses on establishing mechanism-based combination strategy to overcome resistance to nucleoside analogues. ^ I hypothesized that the cytostatic concentrations of nucleoside analogues may cause S-phase arrest by activating an S-phase checkpoint that consists of a series of kinases. This may allow cells to repair damaged DNA over time and spare cytotoxicity. Thus, the ability of cells to enact an S-phase arrest in response to incorporation of potentially lethal amounts of nucleoside analogue may serve as a mechanism of resistance to S-phase-specific agents. As a corollary, the addition of a kinase inhibitor, such as UCN-01, may dysregulate the checkpoint response and abrogate the survival of S-phase-arrested cells by suppression of the survival signaling pathways. Using gemcitabine as a model of S-phase-specific nucleoside analogues in human acute myelogenous leukemia ML-1 cells, I demonstrated that cells arrested in S-phase in response to cytostatic conditions. Proliferation continued after washing the cells into drug-free medium, suggesting S-phase arrest served as a resistance mechanism of cancer cells to spare cytotoxicity of nucleoside analogues. However, nontoxic concentrations of UCN-01 rapidly killed S-phase-arrested cells by apoptosis. Furthermore, the molecular mechanism for UCN-01-induced apoptosis in S-phase-arrested cells was through inhibition of survival pathways associated with these cells. In this regard, suppression of the PI 3-kinase-Akt-Bad survival pathway as well as the NF-κB signaling pathway were associated with induction of apoptosis in S-phase-arrested cells by UCN-01, whereas the Ras-Raf-MEK-ERK pathway appeared not involved. This study has provided the rationales and strategies for optimizing the design of effective combination therapies to overcome resistance to nucleoside analogues. In fact, a clinical trial of the combination of ara-C with UCN-01 to treat relapsed or refractory AML patients has been initiated at U.T.M.D. Anderson Cancer Center. ^