986 resultados para Kim de Mutsert
Resumo:
During the growth of GaAs nanowires on the {111}B GaAs substrate, truncated triangular GaAs nanowires were commonly observed in the bottom region of nanowires. Through detailed structural analysis by electron microscopy, we have determined the growth mechanism of truncated triangular GaAs nanowires. © 2006 IEEE.
Resumo:
We report a two-temperature procedure for the growth of GaAs nanowires by metalorganic chemical vapour deposition. An initial high temperature step affords effective nucleation and promotes epitaxial growth of straight (111)B-oriented nanowires. Lower temperatures are employed subsequently, to minimise nanowire tapering during growth. © 2006 IEEE.
Resumo:
Temperature-dependent polarized microphotoluminescence measurements of single GaAsAlGaAs core-shell nanowires are used to probe their electronic states. The low-temperature emission from these wires is strongly enhanced compared with that observed in bare GaAs nanowires and is strongly polarized, reflecting the dielectric mismatch between the nanowire and the surrounding air. The temperature-dependent band gap of the nanowires is seen to be somewhat different from that observed in bulk GaAs, and the PL rapidly quenches above 120 K, with an activation energy of 17 meV reflecting the presence of nonradiative defects. © 2006 American Institute of Physics.
Resumo:
The growth mechanism and properties of GaAs/InAs nanowires prepared by metalorganic chemical vapor deposition are investigated. Vertical InAs nanowires on GaAs (111)B substrates are successfully grown despite the large lattice mismatch (-7.2%). The crystallographic perfection of InAs nanowires is confirmed by hexagonal or triangular cross section. An interesting L-shaping of GaAs/InAs heterostructure nanowire which could be useful for novel device application is observed. © 2005 IEEE.
Resumo:
The structure of water confined in nanometer-sized cavities is important because, at this scale, a large fraction of hydrogen bonds can be perturbed by interaction with the confining walls. Unusual fluidity properties can thus be expected in the narrow pores, leading to new phenomena like the enhanced fluidity reported in carbon nanotubes. Crystalline mica and amorphous silicon dioxide are hydrophilic substrates that strongly adsorb water. Graphene, on the other hand, interacts weakly with water. This presents the question as to what determines the structure and diffusivity of water when intercalated between hydrophilic substrates and hydrophobic graphene. Using atomic force microscopy, we have found that while the hydrophilic substrates determine the structure of water near its surface, graphene guides its diffusion, favouring growth of intercalated water domains along the C-C bond zigzag direction. Molecular dynamics and density functional calculations are provided to help understand the highly anisotropic water stripe patterns observed.
Resumo:
Riblets are small surface protrusions aligned with the flow direction, which confer an anisotropic roughness to the surface [6]. We have recently reported that the transitional-roughness effect in riblets, which limits their performance, is due to a Kelvin–Helmholtz-like instability of the overlying mean flow [7]. According to our DNSs, the instability sets on as the Reynolds number based on the roughness size of the riblets increases, and coherent, elongated spanwise vortices begin to develop immediately above the riblet tips, causing the degradation of the drag-reduction effect. This is a very novel concept, since prior studies had proposed that the degradation was due to the interaction of riblets with the flow as independent units, either to the lodging of quasi-streamwise vortices in the surface grooves [2] or to the shedding of secondary streamwise vorticity at the riblet peaks [9]. We have proposed an approximate inviscid analysis for the instability, in which the presence of riblets is modelled through an average boundary condition for an overlying, spanwise-independent mean flow. This simplification lacks the accuracy of an exact analysis [4], but in turn applies to riblet surfaces in general. Our analysis succeeds in predicting the riblet size for the onset of the instability, while qualitatively reproducing the wavelengths and shapes of the spanwise structures observed in the DNSs. The analysis also connects the observations with the Kelvin–Helmholtz instability of mixing layers. The fundamental riblet length scale for the onset of the instability is a ‘penetration length,’ which reflects how easily the perturbation flow moves through the riblet grooves. This result is in excellent agreement with the available experimental evidence, and has enabled the identification of the key geometric parameters to delay the breakdown. Although the appearance of elongated spanwise vortices was unexpected in the case of riblets, similar phenomena had already been observed over other rough [3], porous [1] and permeable [11] surfaces, as well as over plant [5,14] and urban [12] canopies, both in the transitional and in the fully-rough regimes. However, the theoretical analyses that support the connection of these observations with the Kelvin–Helmholtz instability are somewhat scarce [7, 11, 13]. It has been recently proposed that Kelvin–Helmholtz-like instabilities are a dominant feature common to “obstructed” shear flows [8]. It is interesting that the instability does not require an inflection point to develop, as is often claimed in the literature. The Kelvin-Helmholtz rollers are rather triggered by the apparent wall-normal-transpiration ability of the flow at the plane immediately above the obstructing elements [7,11]. Although both conditions are generally complementary, if wall-normal transpiration is not present the spanwise vortices may not develop, even if an inflection point exists within the roughness [10]. REFERENCES [1] Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 J. Fluid Mech. 562, 35–72. [2] Choi, H., Moin, P. & Kim, J. 1993 J. Fluid Mech. 255, 503–539. [3] Coceal, O., Dobre, A., Thomas, T. G. & Belcher, S. E. 2007 J. Fluid Mech. 589, 375–409. [4] Ehrenstein, U. 2009 Phys. Fluids 8, 3194–3196. [5] Finnigan, J. 2000 Ann. Rev. Fluid Mech. 32, 519–571. [6] Garcia-Mayoral, R. & Jimenez, J. 2011 Phil. Trans. R. Soc. A 369, 1412–1427. [7] Garcia-Mayoral, R. & Jimenez, J. 2011 J. Fluid Mech. doi: 10.1017/jfm.2011.114. [8] Ghisalberti, M. 2009 J. Fluid Mech. 641, 51–61. [9] Goldstein, D. B. & Tuan, T. C. 1998 J. Fluid Mech. 363, 115–151. [10] Hahn, S., Je, J. & Choi, H. 2002 J. Fluid Mech. 450, 259–285. [11] Jimenez, J., Uhlman, M., Pinelli, A. & G., K. 2001 J. Fluid Mech. 442, 89–117. [12] Letzel, M. O., Krane, M. & Raasch, S. 2008 Atmos. Environ. 42, 8770–8784. [13] Py, C., de Langre, E. & Moulia, B. 2006 J. Fluid Mech. 568, 425–449. [14] Raupach, M. R., Finnigan, J. & Brunet, Y. 1996 Boundary-Layer Meteorol. 78, 351–382.
Resumo:
This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.
Resumo:
Spoken dialogue systems provide a convenient way for users to interact with a machine using only speech. However, they often rely on a rigid turn taking regime in which a voice activity detection (VAD) module is used to determine when the user is speaking and decide when is an appropriate time for the system to respond. This paper investigates replacing the VAD and discrete utterance recogniser of a conventional turn-taking system with a continuously operating recogniser that is always listening, and using the recogniser 1-best path to guide turn taking. In this way, a flexible framework for incremental dialogue management is possible. Experimental results show that it is possible to remove the VAD component and successfully use the recogniser best path to identify user speech, with more robustness to noise, potentially smaller latency times, and a reduction in overall recognition error rate compared to using the conventional approach. © 2013 IEEE.
Resumo:
A partially observable Markov decision process has been proposed as a dialogue model that enables robustness to speech recognition errors and automatic policy optimisation using reinforcement learning (RL). However, conventional RL algorithms require a very large number of dialogues, necessitating a user simulator. Recently, Gaussian processes have been shown to substantially speed up the optimisation, making it possible to learn directly from interaction with human users. However, early studies have been limited to very low dimensional spaces and the learning has exhibited convergence problems. Here we investigate learning from human interaction using the Bayesian Update of Dialogue State system. This dynamic Bayesian network based system has an optimisation space covering more than one hundred features, allowing a wide range of behaviours to be learned. Using an improved policy model and a more robust reward function, we show that stable learning can be achieved that significantly outperforms a simulator trained policy. © 2013 IEEE.
Resumo:
A gate-modulated nanowire oxide photosensor is fabricated by electron-beam lithography and conventional dry etch processing.. The device characteristics are good, including endurance of up to 10(6) test cycles, and gate-pulse excitation is used to remove persistent photoconductivity. The viability of nanowire oxide phototransistors for high speed and high resolution applications is demonstrated, thus potentially expanding the scope of exploitation of touch-free interactive displays.
Resumo:
The effects of beta-glucan, an immunostimulatory agent, on the superoxide dismutase (SOD) and catalase (CAT) activities of erythrocytes and Mx gene expression were studied from grass carp that were challenged with grass carp hemorrhage virus (GCHV). The SOD and CAT activities in erythrocytes and Mx gene expression in spleen from the fish were detected by spectrophotometry and RT-PCR, respectively. Negative control fish were injected with PBS; positive control groups were injected with either P-glucan or GCHV only; and the experimental groups were pre-injected with beta-glucan 15 days prior to injection with GCHV. The results show that the SOD and CAT activities were higher in fish injected with beta-glucan for 15 days than the negative control group injected with PBS. The SOD and CATactivities significantly decreased when the fish were challenged with GCHV, but it was higher in the group pre-treated with beta-glucan than in infected fish not pre-treated, 15 days after GCHV infection. Mx gene expression levels increased during the early stages (at 12 h and 36 h) of GCHV infection, and it remained at higher levels from the 6th till the 10th day in the beta-glucan pre-treated group, but it was failing from the 6th day in the beta-glucan untreated group. The GCHV-infected group pre-treated with P-glucan had a higher survival rate (60%) than the group not pre-treated with P-glucan (20%), suggesting that beta-glucan possesses or enhances anti-viral responses. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Electro-optic switching in short-pitch polymer stabilized chiral nematic liquid crystals was studied and the relative contributions of flexoelectric and dielectric coupling were investigated: polymer stabilization was found to effectively suppress unwanted textural transitions of the chiral nematic liquid crystal and thereby enhance the electro-optical performance (high optical contrast for visible light, a near ideal optical hysteresis, fast electro-optic response). Test cells were studied that possessed interdigitated electrodes to electrically address the liquid crystal. Based on simulations, a well-fitted phenomenological description of the electro-optic response was derived considering both flexoelectro-optic and Kerr-effect based electro-optic response. © 2014 AIP Publishing LLC.
Resumo:
We report the observation of strongly temperature (T)-dependent spectral lines in electronic Raman-scattering spectra of graphite in a high magnetic field up to 45 T applied along the c axis. The magnetic field quantizes the in-plane motion, while the out-of-plane motion remains free, effectively reducing the system dimension from 3 to 1. Optically created electron-hole pairs interact with, or shake up, the one-dimensional Fermi sea in the lowest Landau subbands. Based on the Tomonaga-Luttinger liquid theory, we show that interaction effects modify the spectral line shape from (ω-Δ)-1/2 to (ω-Δ)2α-1/2 at T = 0. At finite T, we predict a thermal broadening factor that increases linearly with T. Our model reproduces the observed T-dependent line shape, determining the electron-electron interaction parameter α to be ∼0.05 at 40 T. © 2014 American Physical Society.
Resumo:
Diverse functionalities of liquid crystals (LCs) offer enormous opportunities for their potential use in advanced mobile and smart displays, as well as novel non-display applications. Here, we present snapshots of the research carried out on emerging applications of LCs ranging from electronics to holography and self-powered systems. In addition, we will show our recent results focused on the development of new LC applications, such as programmable transistors, a transparent and active-type two-dimensional optical array and self-powered display systems based on LCs, and will briefly discuss their novel concepts and basic operating principles. Our research will give insights not only into comprehensively understanding technical and scientific applications of LCs, but also developing new discoveries of other LC-based devices. © 2014 by the authors.