959 resultados para Jordan tensor algebra
Resumo:
Mutations in the SPG4 gene (SPG4-HSP) are the most frequent cause of hereditary spastic paraplegia, but the extent of the neurodegeneration related to the disease is not yet known. Therefore, our objective is to identify regions of the central nervous system damaged in patients with SPG4-HSP using a multi-modal neuroimaging approach. In addition, we aimed to identify possible clinical correlates of such damage. Eleven patients (mean age 46.0 ± 15.0 years, 8 men) with molecular confirmation of hereditary spastic paraplegia, and 23 matched healthy controls (mean age 51.4 ± 14.1years, 17 men) underwent MRI scans in a 3T scanner. We used 3D T1 images to perform volumetric measurements of the brain and spinal cord. We then performed tract-based spatial statistics and tractography analyses of diffusion tensor images to assess microstructural integrity of white matter tracts. Disease severity was quantified with the Spastic Paraplegia Rating Scale. Correlations were then carried out between MRI metrics and clinical data. Volumetric analyses did not identify macroscopic abnormalities in the brain of hereditary spastic paraplegia patients. In contrast, we found extensive fractional anisotropy reduction in the corticospinal tracts, cingulate gyri and splenium of the corpus callosum. Spinal cord morphometry identified atrophy without flattening in the group of patients with hereditary spastic paraplegia. Fractional anisotropy of the corpus callosum and pyramidal tracts did correlate with disease severity. Hereditary spastic paraplegia is characterized by relative sparing of the cortical mantle and remarkable damage to the distal portions of the corticospinal tracts, extending into the spinal cord.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Using series solutions and time-domain evolutions, we probe the eikonal limit of the gravitational and scalar-field quasinormal modes of large black holes and black branes in anti-de Sitter backgrounds. These results are particularly relevant for the AdS/CFT correspondence, since the eikonal regime is characterized by the existence of long-lived modes which (presumably) dominate the decay time scale of the perturbations. We confirm all the main qualitative features of these slowly damped modes as predicted by Festuccia and Liu [G. Festuccia and H. Liu, arXiv:0811.1033.] for the scalar-field (tensor-type gravitational) fluctuations. However, quantitatively we find dimensional-dependent correction factors. We also investigate the dependence of the quasinormal mode frequencies on the horizon radius of the black hole (brane) and the angular momentum (wave number) of vector- and scalar-type gravitational perturbations.
Resumo:
There is no doubt about the importance of service quality as a factor of businesses' success, but to measure this quality has proved to be a challenge when one considers different environmental contexts. Given this, the main goal of this paper was to test two measurement scales of perceived set-vice quality. The comparison between Service Quality scale (Servqual) and Retail Set-vice Quality (RSQ) was conducted by means of a survey with 351 participants, clients of a home center stores chain located in the city of Sao Paulo. The data were analyzed using both exploratory and confirmatory factor analysis. As a result, both scales demonstrated acceptable levels of reliability and validity However; the RSQ demonstrated a better performance in the nomological test since it was able to explain 43% of the loyalty towards the retailer; while the Servqual scale explained only 11%.
Resumo:
This work presents a fully non-linear finite element formulation for shell analysis comprising linear strain variation along the thickness of the shell and geometrically exact description for curved triangular elements. The developed formulation assumes positions and generalized unconstrained vectors as the variables of the problem, not displacements and finite rotations. The full 3D Saint-Venant-Kirchhoff constitutive relation is adopted and, to avoid locking, the rate of thickness variation enhancement is introduced. As a consequence, the second Piola-Kirchhoff stress tensor and the Green strain measure are employed to derive the specific strain energy potential. Curved triangular elements with cubic approximation are adopted using simple notation. Selected numerical simulations illustrate and confirm the objectivity, accuracy, path independence and applicability of the proposed technique.
Resumo:
The purpose of the present theory is to improve Hypoplasticity, especially in relation to reloading processes. This is done by means of two hypoplastic equations (a classical equation along with a new one containing a so-called mnemonic tensor), a cone in stress space and a criterion defining loading, unloading and reloading. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background: CD4(+)CD25(high) regulatory T (T(Reg)) cells modulate antigen-specific T cell responses, and can suppress anti-viral immunity. In HTLV-1 infection, a selective decrease in the function of T(Reg) cell mediated HTLV-1-tax inhibition of FOXP3 expression has been described. The purpose of this study was to assess the frequency and phenotype of T(Reg) cells in HTLV-1 asymptomatic carriers and in HTLV-1-associated neurological disease (HAM/TSP) patients, and to correlate with measures of T cell activation. Results: We were able to confirm that HTLV-1 drives activation, spontaneous IFN gamma production, and proliferation of CD4+ T cells. We also observed a significantly lower proportion of CTLA-4(+) T(Reg) cells (CD4(+)CD25(high) T cells) in subjects with HAM/TSP patients compared to healthy controls. Ki-67 expression was negatively correlated to the frequency of CTLA-4(+) T(Reg) cells in HAM/TSP only, although Ki-67 expression was inversely correlated with the percentage of CD127(low) T(Reg) cells in healthy control subjects. Finally, the proportion of CD127(low) T(Reg) cells correlated inversely with HTLV-1 proviral load. Conclusion: Taken together, the results suggest that T(Reg) cells may be subverted in HAM/TSP patients, which could explain the marked cellular activation, spontaneous cytokine production, and proliferation of CD4(+) T cells, in particular those expressing the CD25(high)CD127(low) phenotype. T(Reg) cells represent a potential target for therapeutic intervention for patients with HTLV-1-related neurological diseases.
Resumo:
Context. It is not known how many globular clusters may remain undetected towards the Galactic bulge. Aims. One of the aims of the VISTA Variables in the Via Lactea (VVV) Survey is to accurately measure the physical parameters of the known globular clusters in the inner regions of the Milky Way and search for new ones, hidden in regions of large extinction. Methods. From deep near-infrared images, we derive deep JHK(S)-band photometry of a region surrounding the known globular cluster UKS 1 and reveal a new low-mass globular cluster candidate that we name VVV CL001. Results. We use the horizontal-branch red clump to measure E(B-V) similar to 2.2 mag, (m - M)(0) = 16.01 mag, and D = 15.9 kpc for the globular cluster UKS 1. On the basis of near-infrared colour-magnitude diagrams, we also find that VVV CL001 has E(B-V) similar to 2.0, and that it is at least as metal-poor as UKS 1, although its distance remains uncertain. Conclusions. Our finding confirms the previous projection that the central region of the Milky Way harbours more globular clusters. VVV CL001 and UKS 1 are good candidates for a physical cluster binary, but follow-up observations are needed to decide if they are located at the same distance and have similar radial velocities.
Resumo:
Using a quasitoroidal set of coordinates with coaxial circular magnetic surfaces, Vlasov equation is solved for collisionless plasmas in drift approach and a perpendicular dielectric tensor is found for large aspect ratio tokamaks in a low frequency band. Taking into account plasma rotation and charge separation parallel electric field, it is found that an ion geodesic effect deform Alfveacuten wave continuum producing continuum minimum at the rational magnetic surfaces, which depends on the plasma rotation and poloidal mode numbers. In kinetic approach, the ion thermal motion defines the geodesic effect but the mode frequency also depends on electron temperature. A geodesic ion Alfveacuten mode predicted below the continuum minimum has a small Landau damping in plasmas with Maxwell distribution but the plasma rotation may drive instability.
Resumo:
Using a quasitoroidal set of coordinates with coaxial circular magnetic surfaces, the Vlasov equation is solved for collisionless plasmas, and the dielectric tensor is found for large aspect ratio tokamaks in a low frequency band. Taking into account q-profile and charge separation parallel electric field, it is found that the Alfven wave continuum is deformed by ion geodesic effects producing continuum minimum at the rational magnetic surfaces. Low frequency geodesic ion induced Alfven waves are found below the continuum minimum where collisionless damping has a gap for Maxwell distribution. In kinetic approach, the ion thermal motion defines the geodesic effect but the mode frequency is strongly corrected due to parallel motion of electrons.
Resumo:
Using a quasi-toroidal set of coordinates in plasmas with coaxial circular magnetic surfaces, the Vlasov equation is solved, and dielectric tensor is found for large aspect ratio tokamaks in a low frequency band. Taking into account the q-profile and drift effects, Alfven wave continuum deformation by geodesic effects is analyzed. It is shown that the Alfven continuum has a minimum defined by the ion thermal velocity at the rational magnetic surfaces q(s)=-M/N, where M and N are the poloidal and toroidal mode numbers, respectively, and the parallel wave number is zero. Low frequency global Alfven waves are found below the continuum minimum. In hot ion plasmas, the geodesic term changes sign, provoking some deformation of Alfven velocity by a factor (1+q(2))(-1/2), and the continuum minimum disappears. (C) 2008 American Institute of Physics.
Resumo:
Let omega be a factor state on the quasilocal algebra A of observables generated by a relativistic quantum field, which, in addition, satisfies certain regularity conditions [satisfied by ground states and the recently constructed thermal states of the P(phi)(2) theory]. We prove that there exist space- and time-translation invariant states, some of which are arbitrarily close to omega in the weak * topology, for which the time evolution is weakly asymptotically Abelian. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3372623]
Resumo:
The model of the position-dependent noncommutativity in quantum mechanics is proposed. We start with given commutation relations between the operators of coordinates [(x) over cap (i), (x) over cap (j)] = omega(ij) ((x) over cap), and construct the complete algebra of commutation relations, including the operators of momenta. The constructed algebra is a deformation of a standard Heisenberg algebra and obeys the Jacobi identity. The key point of our construction is a proposed first-order Lagrangian, which after quantization reproduces the desired commutation relations. Also we study the possibility to localize the noncommutativity.
Resumo:
The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular, random matrix theory (RMT) concepts have proven to be useful. In discussing transition from regular behavior to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the present paper we analyze the regular to chaotic behavior of small world (SW) networks using an extension of the Gaussian orthogonal ensemble. This RMT ensemble, coined the deformed Gaussian orthogonal ensemble (DGOE), supplies a natural foundation of the Brody formula. SW networks follow GOE statistics until a certain range of eigenvalue correlations depending upon the strength of random connections. We show that for these regimes of SW networks where spectral correlations do not follow GOE beyond a certain range, DGOE statistics models the correlations very well. The analysis performed in this paper proves the utility of the DGOE in network physics, as much as it has been useful in other physical systems.