975 resultados para Johnson-Mehl-Avrami equation
Resumo:
Little is known about the impact of ocean acidification on predator-prey dynamics. Herein, we examined the effect of carbon dioxide (CO(2)) on both prey and predator by letting one predatory reef fish interact for 24 h with eight small or large juvenile damselfishes from four congeneric species. Both prey and predator were exposed to control or elevated levels of CO(2). Mortality rate and predator selectivity were compared across CO(2) treatments, prey size and species. Small juveniles of all species sustained greater mortality at high CO(2) levels, while large recruits were not affected. For large prey, the pattern of prey selectivity by predators was reversed under elevated CO(2). Our results demonstrate both quantitative and qualitative consumptive effects of CO(2) on small and larger damselfish recruits respectively, resulting from CO(2)-induced behavioural changes likely mediated by impaired neurological function. This study highlights the complexity of predicting the effects of climate change on coral reef ecosystems.
Resumo:
Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems.
Resumo:
It is known that the Camassa–Holm (CH) equation describes pseudo-spherical surfaces and that therefore its integrability properties can be studied by geometrical means. In particular, the CH equation admits nonlocal symmetries of “pseudo-potential type”: the standard quadratic pseudo-potential associated with the geodesics of the pseudo-spherical surfaces determined by (generic) solutions to CH, allows us to construct a covering π of the equation manifold of CH on which nonlocal symmetries can be explicitly calculated. In this article, we present the Lie algebra of (first-order) nonlocal π-symmetries for the CH equation, and we show that this algebra contains a semidirect sum of the loop algebra over sl(2,R) and the centerless Virasoro algebra. As applications, we compute explicit solutions, we construct a Darboux transformation for the CH equation, and we recover its recursion operator. We also extend our results to the associated Camassa–Holm equation introduced by J. Schiff.
Resumo:
The study of matter under conditions of high density, pressure, and temperature is a valuable subject for inertial confinement fusion (ICF), astrophysical phenomena, high-power laser interaction with matter, etc. In all these cases, matter is heated and compressed by strong shocks to high pressures and temperatures, becomes partially or completely ionized via thermal or pressure ionization, and is in the form of dense plasma. The thermodynamics and the hydrodynamics of hot dense plasmas cannot be predicted without the knowledge of the equation of state (EOS) that describes how a material reacts to pressure and how much energy is involved. Therefore, the equation of state often takes the form of pressure and energy as functions of density and temperature. Furthermore, EOS data must be obtained in a timely manner in order to be useful as input in hydrodynamic codes. By this reason, the use of fast, robust and reasonably accurate atomic models, is necessary for computing the EOS of a material.
Resumo:
We will present recent developments in the calculation of opacity and equation of state tables suitable for including in the radiation hydrodynamic code ARWEN [1] to study processes like ICF or X-ray secondary sources. For these calculations we use the code BiG BART to compute opacities in LTE conditions, with self-consistent data generated with the Flexible Atomic Code (FAC) [2]. Non-LTE effects are approximately taken into account by means of the improved RADIOM model [3], which makes use of existing LTE data tables. We use the screened-hydrogenic model [4] to derive the Equation of State using the population and energy of the levels avaliable from the atomic data
Resumo:
This paper presents a new form of the one-dimensional Reynolds equation for lubricants whose rheological behaviour follows a modified Carreau rheological model proposed by Bair. The results of the shear stress and flow rate obtained through a new Reynolds–Carreau equation are shown and compared with the results obtained by other researchers.
Resumo:
We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4−2 ɛ of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's −5/3 law is, thus, recovered for ɛ=2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the −5/3 law emerges in the presence of a saturation in the ɛ dependence of the scaling dimension of the eddy diffusivity at ɛ=3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.
Resumo:
Time-resolved reflectance is proposed and effectively used for the nondestructive measurement of the optical properties in apples. The technique is based on the detection of the temporal dispersion of a short laser pulse injected into the probed medium. The time-distribution of re-emitted photons interpreted with a solution of the Diffusion equation yields the mean values of the absorption and reduced scattering coefficients of the medium. The proposed technique proved valuable for the measurement of the absorption and scattering spectra of different varieties of apples. No major variations were observed in the experimental data when the fruit was peeled, proving that the measured optical properties are referred to the pulp. The depth of probed volume was determined to be about 2 cm. Finally, the technique proved capable to follow the change in chlorophyll absorption during storage.
Resumo:
Time-resolved reflectance is proposed and effectively used for the nondestructive measurement of the optical properties in apples. The technique is based on the detection of the temporal dispersion of a short laser pulse injected into the probed medium. The time-distribution of re-emitted photons interpreted with a solution of the Diffusion equation yields the mean values of the absorption and reduced scattering coefficients of the medium. The proposed technique proved valuable for the measurement of the absorption and scattering spectra of different varieties of apples. No major variations were observed in the experimental data when the fruit was peeled, proving that the measured optical properties are referred to the pulp. The depth of probed volume was determined to be about 2 cm. Finally, the technique proved capable to follow the change in chlorophyll absorption during storage.
Resumo:
Four-dimensional flow in the phase space of three amplitudes of circularly polarized Alfven waves and one relative phase, resulting from a resonant three-wave truncation of the derivative nonlinear Schrödinger equation, has been analyzed; wave 1 is linearly unstable with growth rate , and waves 2 and 3 are stable with damping 2 and 3, respectively. The dependence of gross dynamical features on the damping model as characterized by the relation between damping and wave-vector ratios, 2 /3, k2 /k3, and the polarization of the waves, is discussed; two damping models, Landau k and resistive k2, are studied in depth. Very complex dynamics, such as multiple blue sky catastrophes and chaotic attractors arising from Feigenbaum sequences, and explosive bifurcations involving Intermittency-I chaos, are shown to be associated with the existence and loss of stability of certain fixed point P of the flow. Independently of the damping model, P may only exist as against flow contraction just requiring.In the case of right-hand RH polarization, point P may exist for all models other than Landau damping; for the resistive model, P may exist for RH polarization only if 2+3/2.
Resumo:
We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non- Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil- lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.
Resumo:
Dynamic soil-structure interaction has been for a long time one of the most fascinating areas for the engineering profession. The building of large alternating machines and their effects on surrounding structures as well as on their own functional behavior, provided the initial impetus; a large amount of experimental research was done,and the results of the Russian and German groups were especially worthwhile. Analytical results by Reissner and Sehkter were reexamined by Quinlan, Sung, et. al., and finally Veletsos presented the first set of reliable results. Since then, the modeling of the homogeneous, elastic halfspace as a equivalent set of springs and dashpots has become an everyday tool in soil engineering practice, especially after the appearance of the fast Fourier transportation algorithm, which makes possible the treatment of the frequency-dependent characteristics of the equivalent elements in a unified fashion with the general method of analysis of the structure. Extensions to the viscoelastic case, as well as to embedded foundations and complicated geometries, have been presented by various authors. In general, they used the finite element method with the well known problems of geometric truncations and the subsequent use of absorbing boundaries. The properties of boundary integral equation methods are, in our opinion, specially well suited to this problem, and several of the previous results have confirmed our opinion. In what follows we present the general features related to steady-state elastodynamics and a series of results showing the splendid results that the BIEM provided. Especially interesting are the outputs obtained through the use of the so-called singular elements, whose description is incorporated at the end of the paper. The reduction in time spent by the computer and the small number of elements needed to simulate realistically the global properties of the halfspace make this procedure one of the most interesting applications of the BIEM.