965 resultados para Isotermas de Langmuir
Resumo:
This study evaluates the inclusion of quaternary ammonium salt, bromide hexadecyl trimethyl ammonium (HDTMA-Br) on sodium bentonite to evaluate their performance on the adsorption of phenol present in produced water. It was observed an increase in d001 samples modified with HDTMA-Br by diffraction of X-rays, showing the intercalation of quaternary ammonium cations in the interlamellar layers of clay. Through the adsorption isotherms could be abserver adsorption behavior of sodium bentonite and organophilic bentonite produced in three different concentrations of HDTMA-Br for adsorption of phenol, which is the main phenolic compound found in the product water. Different concentrations of synthetic solutions of phenol were placed in contact with these adsorbents under the same conditions of agitation and temperature. The adsorbent showed adsorptive favorable, especially the clay modified with the highest concentration of HDTMA-Br, 150% CEC of clay, BEN30-14, with higher amounts of phenol adsorbed per gram of adsorbent (mg.g-1)
Resumo:
X-ray irradiation is shown to affect electronic properties of polyaniline (PANi) in composite Langmuir-Blodgett (LB) films of PANi and cadmium stearate, in a similar way to acid doping. The time it takes for the shift in the UV-vis spectra, characteristic of PANi doping, increases linearly with the film thickness, thus indicating a surface-controlled process. The humidity of the environment under which the films are irradiated is also of extreme importance. No shin is observed under vacuum or under dry atmospheres of N-2, O-2 and Ar. For humid environments the time for the shift decreases with increasing relative humidity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The material octakis[3-(3-amino- 1,2,4-triazole)propyl]octasilsesquioxane (ATZ-SSQ) was synthesized and its potential was assessed for Cu(II), Ni(II), Co(II), Zn(II) and Fe(III) from their ethanol solutions and compared with related 3-amino-1,2,4-triazole-propyl modified silica gel (ATZ-SG). The adsorption was performed using a batchwise process and both organofunctionalized surfaces showed the ability to adsorb the metal ions from ethanol solution. The Langmuir model allowed to describe the sorption of the metal ions on ATZ-SSQ and ATTZ-SG in a satisfactory way. The equilibrium is reached very quickly Q min) for ATZ-SSQ, indicating that the adsorption sites are well exposed. The maximum metal ion uptake values for Cu(II), Co(II), Zn(II), Ni(II) and Fe(III) were 0.86, 0.09, 0.19, 0.09 and 0.10 mmol g(-1), respectively, for the ATZ-SSQ, which were higher than the corresponding values 0.21, 0.04, 0.14, 0.05 and 0.07 mmol g(-1) achieved with the ATZ-SG. In order to obtain more information on the metal-ligand interaction of the complexes on the surface of the ATZ-SSQ, Cu(II) was used as a probe to determine the arrangements of the ligands around the central metal ion by electron spin resonance (ESR). The ATZ-SSQ was used for the separation and determination (in flow using a column technique) of the metal ions present in commercial ethanol. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Among the polymers that stand out most in recent decades, chitosan, a biopolymer with physico-chemical and biological promising properties has been the subject of a broad field of research. Chitosan comes as a great choice in the field of adsorption, due to their adsorbents properties, low cost and abundance. The presence of amino groups in its chain govern the majority of their properties and define which application a sample of chitosan may be used, so it is essential to determine their average degree of deacetylation. In this work we developed kinetic and equilibrium studies to monitor and characterize the adsorption process of two drugs, tetracycline hydrochloride and sodium cromoglycate, in chitosan particles. Kinetic models and the adsorption isotherms were applied to the experimental data. For both studies, the zeta potential analyzes were also performed. The adsorption of each drug showed distinct aspects. Through the studies developed in this work was possible to describe a kinetic model for the adsorption of tetracycline on chitosan particles, thus demonstrating that it can be described by two kinetics of adsorption, one for protonated tetracycline and another one for unprotonated tetracycline. In the adsorption of sodium cromoglycate on chitosan particles, equilibrium studies were developed at different temperatures, allowing the determination of thermodynamic parameters
Resumo:
Nowadays, the use of chemicals that satisfactorily meet the needs of different sectors of the chemical industry is linked to the consumption of biodegradable materials. In this context, this work contemplated biotechnological aspects with the objective of developing a more environmentally-friendly corrosion inhibitor. In order to achieve this goal, nanoemulsion-type systems (NE) were obtained by varying the amount of Tween 80 (9 to 85 ppm) a sortitan surfactant named polyoxyethylene (20) monooleate. This NE-system was analyzed using phase diagrams in which the percentage of the oil phase (commercial soybean oil, codenamed as OS) was kept constant. By changing the amount of Tween 80, several polar NE-OS derived systems (O/W-type nanoemulsion) were obtained and characterized through light scattering, conductivity and pH, and further subjected to electrochemical studies. The interfacial behavior of these NE-OS derived systems (codenamed NE-OS1, S2, S3, S4 and S5) as corrosion inhibitors on carbon steel AISI 1020 in saline media (NaCl 3.5%) were evaluated by measurement of Open Circuit Potential (OCP), Polarization Curves (Tafel extrapolation method) and Electrochemical Impedance Spectroscopy (EIS). The analyzed NE-OS1 and NE-OS2 systems were found to be mixed inhibitors with quantitative efficacy (98.6% - 99.7%) for concentrations of Tween 80 ranging between 9 and 85 ppm. According to the EIS technique, maximum corrosion efficiency was observed for some tested NE-OS samples. Additionaly to the electrochemical studies, Analysis of Variance (ANOVA) and Principal Component Analysis (PCA) were used, characterization of the nanoemulsion tested systems and adsorption studies, respectively, which confirmed the results observed in the experimental analyses using diluted NE-OS samples in lower concentrations of Tween 80 (0.5 1.75 ppm)
Resumo:
Due to its physico-chemical and biological properties, related to the abundance and low cost of raw material, chitosan has been recognized as a material of wide application in various fields, such as in drug delivery systems. Many of these properties are associated with the presence of amino groups in its polymer chain. A proper determination of these amino groups is very important, in order to properly specify if a given chitosan sample can be used in a particular application. Thus, in this work, initially, a comparison between the determination of the deacetylation degree by conductometry and elemental analysis was carried out using a detailed analysis of error propagation. It was shown that the conductometric analysis resulted in a simple and safe method for the determining the degree of deacetylation of chitosan. Subsequently, experiments were performed to monitor and characterize the adsorption of tetracycline on chitosan particles through kinetic and equilibrium studies. The main models of kinetics and adsorption isotherms, widely used to describe the adsorption on wastewater treatment systems and the drug loading, were used to treat the experimental data. Firstly, it was shown that an apparent linear t/q(t) × t relationship did not imply in a pseudo-second-order adsorption kinetics, differently of what has been repeatedly reported in the literature. It was found that this misinterpretation can be avoided by using non-linear regression. Finally, the adsorption of tetracycline on chitosan particles was analyzed using insights obtained from theoretical analysis, and the parameters generated were used to analyze the kinetics of adsorption, the isotherm of adsorption and to ropose a mechanism of adsorption
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Alkyl polyethoxylates are surfactants widely used in vastly different fields, from oil exploitation to pharmaceutical applications. One of the most interesting characteristics of these surfactants is their ability to form micellar systems with specific geometry, the so-called wormlike micelle. In this work, microemulsions with three distinct compositions (C/T = 40 %, 30 % and 25 %) was used with contain UNITOL / butanol / water / xylene, cosurfactant / surfactante (C/S) ratio equal to 0,5. The microemulsion was characterized by dynamic light scattering (DLS), capillary viscometry, torque rheometry and surface tensiometry experiments carried out with systems based on xylene, water, butanol (cosurfactant) and nonaethyleneglycolmonododecyl ether (surfactant), with fixed surfactant:cosurfactant:oil composition (with and without oil phase) and varying the overall concentration of the microemulsion. The results showed that a transition from wormlike micelles to nanodrops was characterized by maximum relative viscosity (depending on how relative viscosity was defined), which was connected to maximum effective diameter, determined by DLS. Surface tension suggested that adsorption at the air water interface had a Langmuir character and that the limiting value of the surfactant surface excess was independent of the presence of cosurfactant and xylene. The results of the solubilization of oil sludge and oil recovery with the microemulsion: C/S = 40%, 30% and 25% proved to be quite effective in solubilization of oil sludge, with the percentage of solubilization (%solubilization) as high as 92.37% and enhanced oil recovery rates up to 90.22% for the point with the highest concentration of active material (surfactant), that is, 40%.
Resumo:
The contamination by metal ions has been occurring for decades through the introduction of liquid effluent not treated, mainly from industrial activities, rivers and lakes, affecting water quality. For that the effluent can be disposed in water bodies, environmental standards require that they be adequately addressed, so that the concentration of metals does not exceed the limits of standard conditions of release in the receptor. Several methods for wastewater treatment have been reported in the literature, but many of them are high cost and low efficiency. The adsorption process has been used as effective for removal of metal ions. This paper presents studies to evaluate the potential of perlite as an adsorbent for removing metals in model solution. Perlite, in its natural form (NP) and expanded (EP), was characterized by X-ray fluorescence, X-ray diffraction, surface area analysis using nitrogen adsorption (BET method), scanning electron microscopy and Fourier transform infrared spectroscopy. The physical characteristic and chemical composition of the material presented were appropriate for the study of adsorption. Adsorption experiments by the method of finite bath for model solutions of metal ions Cr3+, Cu2+, Mn2+ and Ni2+ were carried out in order to study the effect of pH, mass of the adsorbent and the contact time on removal of ions in solution. The results showed that perlite has good adsorption capacity. The NP has higher adsorption capacity (mg g-1) than the EP. According to the values of the constant of Langmuir qm (mg g-1), the maximum capacity of the monolayer was obtained and in terms of proportion of mass, we found the following order experimental adsorption: Cr3+ (2.194 mg g- 1) > Ni2+ (0.585 mg g-1) > Mn2+ (0.515 mg g-1) > Cu2+ (0.513 mg g-1) and Cr3+ (1.934 mg g-1)> Ni2+ (0.514 mg g-1) > Cu2+ (0.421 mg g-1) > Mn2+ (0.364 mg g-1) on the NP and EP, respectively. The experimental data were best fitted the Langmuir model compared to Freundlich for Cu2+, Mn2+ and Ni2+. However, for the Cr3+, both models fit the experimental data
Resumo:
Textile activity results in effluents with a variety of dyes. Among the several processes for dye-uptaking from these wastewaters, sorption is one of the most effective methods, chitosan being a very promising alternative for this end. The sorption of Methyl Orange by chitosan crosslinked particles was approached using equilibrium and kinetic analyses at different pH s. Besides the standard pseudo-order analysis normally effectuated (i.e. pseudo-first-order and pseudo-second-order), a novel approach involving a pseudo-nth-order kinetics was used, nbeing determined via non-linear regression, using the Levenberg-Marquardt method. Zeta potential measurements indicated that electrostatic interactions were important for the sorption process. Regarding equilibrium experiments, data were well fitted to a hybrid Langmuir-Freundlich isotherm, and estimated Gibbs free energy of adsorption as a function of mass of dye per area of chitosan showed that the process of adsorption becomes more homogeneous as the pH of the continuous phase decreased. Considering the kinetics of sorption, although a pseudo-nth-order description yielded good fits, a kinetic equation involving diffusion adsorption phenomena was found to be more consistent in terms of a physicochemical description of the sorption process