984 resultados para Intrinsic characteristics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taking shear-induced dilatation into consideration in shear transformation zone (STZ) operations, we derive a new yield criterion that reflects the pressure sensitivity in plastic flow in metallic glasses (MGs), which agrees well with experiments. Furthermore, an intrinsic theoretical correlation between the pressure sensitivity coefficient and the dilatation factor is revealed. It is found that the pressure sensitivity of plastic flow of MGs originates in the dilatation of microscale STZs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to evaluate the production potential of an artificial impoundment, the phytoplankton of the Shen reservoir was sampled from November 1981 to June 1982 at three stations during three periods of distinct seasonal hydrographic characteristics. The samples were subsampled and quantified. Most of the phytoplankton were identified to the species level. There were in all 53 species comprising Chlorophyceae contributing 36.70% with species of Volvox, Pediastrum, Closterium, Staurodesmus and Ankistrodesmus as dominant species in this group. The Cyanophyceae contributed 30.00% with species of Microcystis, Nostoc , and Oscillatoria as the dominant species. An analysis of temporal and spatial changes in composition and abundance of the various groups showed that these were influenced by water temperature, sampling period and station. Based on the trophic status of the most abundant species, the composition of the phytoplankton is indicative of a tropical reservoir with a moderate productivity for fish culture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fingerling of Clarias gariepinus have been reported to have an optimal protein requirement of 40%. Not much is known about the effect that varying this protein level has in the haematological characteristics (i.e packed cell volume, red blood cell count, haemoglobin concentration and mean corpuscular haemoglobin concentration) and on some landmarks measured along the fish's body. The haematological parameter are useful in assessing the effect of dietary treatment on leanness or robustness in the fish. The results of these experiment reveals that of the 17 landmarks measured on the bodies of the fish species fed dietary protein levels of no protein 11% (low protein), 29% (sub optimal) and 40% (optimal), only four of the landmarks show significant difference. Also, analysis of the haematological characteristics show significant difference in haematoant (PCV) and erthroycte count (RBC) in all the treatments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oreochromis niloticus (L.) were caught by beach seining, hook and line and trawling from Nyanza Gulf, lake Victoria (Kenya) in order to study their feeding ecology and population characteristics. Collected fish were weighed and TL measured immediately after capture. Fish were dissected and sexed. Stomach contents were removed and preserved in 4% buffered formalin for laboratory analysis. In the laboratory items were sorted into categories such as three quarters, half and quarter and awarded 20, 15 and 5 points respectively. Main food items for O. niloticus from November 1998 to March 1999 were insects, algae, fish and plant material. Increase in insects in the diet of O. niloticus might be attributed to the lake infestation by water hyacinth which harbours different species of insects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A torch with a set of inter-electrode inserts between the cathode and the anode/nozzle with a wide nozzle exit was designed to generate plasma jets at chamber pressures of 500–10 000 Pa. The variation of the arc voltage was examined with the change in working parameters such as gas flow rate and chamber pressure. The fluctuation in the arc voltage was recorded with an oscilloscope, and the plasma jet fluctuation near the torch exit was observed with a high-speed video camera and detected with a double-electrostatic probe. Results show that the 300 Hz wave originated from the tri-phase rectified power supply was always detected under all generating conditions. Helmholtz oscillations over 3000 Hz was detected superposed on the 300 Hz wave at gas flow rates higher than 8.8 slm with a peak to valley amplitude lower than 5% of the average voltage value. No appreciable voltage fluctuation caused by the irregular arc root movement is detected, and mechanisms for the arc voltage and jet flow fluctuations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An arc-heated thruster of 130–800 W input power is tested in a vacuum chamber at pressures lower than 20 Pa with argon or H2–N2 gas mixture as propellant. The time-dependent arc voltage-current curve, outside-surface temperature of the anode nozzle and the produced thrust of the firing arcjet thruster are measured in situ simultaneously, in order to analyze and evaluate the dependence of thruster working characteristics and output properties, such as specific impulse and thrust efficiency, on nozzle temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this thesis a study of the effect of the longitudinal distribution of optical intensity and electron density on the static and dynamic behavior of semiconductor lasers is performed. A static model for above threshold operation of a single mode laser, consisting of multiple active and passive sections, is developed by calculating the longitudinal optical intensity distribution and electron density distribution in a self-consistent manner. Feedback from an index and gain Bragg grating is included, as well as feedback from discrete reflections at interfaces and facets. Longitudinal spatial holeburning is analyzed by including the dependence of the gain and the refractive index on the electron density. The mechanisms of spatial holeburning in quarter wave shifted DFB lasers are analyzed. A new laser structure with a uniform optical intensity distribution is introduced and an implementation is simulated, resulting in a large reduction of the longitudinal spatial holeburning effect.

A dynamic small-signal model is then developed by including the optical intensity and electron density distribution, as well as the dependence of the grating coupling coefficients on the electron density. Expressions are derived for the intensity and frequency noise spectrum, the spontaneous emission rate into the lasing mode, the linewidth enhancement factor, and the AM and FM modulation response. Different chirp components are identified in the FM response, and a new adiabatic chirp component is discovered. This new adiabatic chirp component is caused by the nonuniform longitudinal distributions, and is found to dominate at low frequencies. Distributed feedback lasers with partial gain coupling are analyzed, and it is shown how the dependence of the grating coupling coefficients on the electron density can result in an enhancement of the differential gain with an associated enhancement in modulation bandwidth and a reduction in chirp.

In the second part, spectral characteristics of passively mode-locked two-section multiple quantum well laser coupled to an external cavity are studied. Broad-band wavelength tuning using an external grating is demonstrated for the first time in passively mode-locked semiconductor lasers. A record tuning range of 26 nm is measured, with pulse widths of typically a few picosecond and time-bandwidth products of more than 10 times the transform limit. It is then demonstrated that these large time-bandwidth products are due to a strong linear upchirp, by performing pulse compression by a factor of 15 to a record pulse widths as low 320 fs.

A model for pulse propagation through a saturable medium with self-phase-modulation, due to the a-parameter, is developed for quantum well material, including the frequency dependence of the gain medium. This model is used to simulate two-section devices coupled to an external cavity. When no self-phase-modulation is present, it is found that the pulses are asymmetric with a sharper rising edge, that the pulse tails have an exponential behavior, and that the transform limit is 0.3. Inclusion of self-phase-modulation results in a linear upchirp imprinted on the pulse after each round-trip. This linear upchirp is due to a combination of self-phase-modulation in a gain section and absorption of the leading edge of the pulse in the saturable absorber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zintl phases, a subset of intermetallic compounds characterized by covalently-bonded "sub-structures," surrounded by highly electropositive cations, exhibit precisely the characteristics desired for thermoelectric applications. The requirement that Zintl compounds satisfy the valence of anions through the formation of covalent substructures leads to many unique, complex crystal structures. Such complexity often leads to exceptionally low lattice thermal conductivity due to the containment of heat in low velocity optical modes in the phonon dispersion. To date, excellent thermoelectric properties have been demonstrated in several Zintl compounds. However, compared with the large number of known Zintl phases, very few have been investigated as thermoelectric materials.

From this pool of uninvestigated compounds, we selected a class of Zintl antimonides that share a common structural motif: anionic moieties resembling infinite chains of linked MSb4 tetrahedra, where $M$ is a triel element. The compounds discussed in this thesis (A5M2Sb6 and A3MSb3, where A = Ca or Sr and M = Al, Ga and In) crystallize as four distinct, but closely related "chain-forming" structure types. This thesis describes the thermoelectric characterization and optimization of these phases, and explores the influence of their chemistry and structure on the thermal and electronic transport properties. Due to their large unit cells, each compound exhibits exceptionally low lattice thermal conductivity (0.4 - 0.6 W/mK at 1000 K), approaching the predicted glassy minimum at high temperatures. A combination of Density Functional calculations and classical transport models were used to explain the experimentally observed electronic transport properties of each compound. Consistent with the Zintl electron counting formalism, A5M2Sb6 and A3MSb3 phases were found to have filled valence bands and exhibit intrinsic electronic properties. Doping with divalent transition metals (Zn2+ and Mn2+) on the M3+ site, or Na1+ on the A3+ site allowed for rational control of the carrier concentration and a transition towards degenerate semiconducting behavior. In optimally-doped samples, promising peak zT values between 0.4 and 0.9 were obtained, highlighting the value of continued investigations of complex Zintl phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In laser-target interaction, the effects of laser intensity on plasma oscillation at the front surface of targets have been investigated by one-dimensional particle in cell simulations. The periodical oscillations of the ion density and electrostatic field at the front surface of the targets are reported for the first time, which is considered as an intrinsic property of the target excited by the laser. The oscillation period depends only on initial plasma density and is irrelevant with laser intensity. Flattop structures with curves in ion phase space are found with a more intense laser pulse due to the larger amplitude variation of the electrostatic field. A simple but valid model is proposed to interpret the curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a new simulation methodology in which variable density turbulent flows can be studied in the context of a mixing layer with or without the presence of gravity. Specifically, this methodology is developed to probe the nature of non-buoyantly-driven (i.e. isotropically-driven) or buoyantly-driven mixing deep inside a mixing layer. Numerical forcing methods are incorporated into both the velocity and scalar fields, which extends the length of time over which mixing physics can be studied. The simulation framework is designed to allow for independent variation of four non-dimensional parameters, including the Reynolds, Richardson, Atwood, and Schmidt numbers. Additionally, the governing equations are integrated in such a way to allow for the relative magnitude of buoyant energy production and non-buoyant energy production to be varied.

The computational requirements needed to implement the proposed configuration are presented. They are justified in terms of grid resolution, order of accuracy, and transport scheme. Canonical features of turbulent buoyant flows are reproduced as validation of the proposed methodology. These features include the recovery of isotropic Kolmogorov scales under buoyant and non-buoyant conditions, the recovery of anisotropic one-dimensional energy spectra under buoyant conditions, and the preservation of known statistical distributions in the scalar field, as found in other DNS studies.

This simulation methodology is used to perform a parametric study of turbulent buoyant flows to discern the effects of varying the Reynolds, Richardson, and Atwood numbers on the resulting state of mixing. The effects of the Reynolds and Atwood numbers are isolated by looking at two energy dissipation rate conditions under non-buoyant (variable density) and constant density conditions. The effects of Richardson number are isolated by varying the ratio of buoyant energy production to total energy production from zero (non-buoyant) to one (entirely buoyant) under constant Atwood number, Schmidt number, and energy dissipation rate conditions. It is found that the major differences between non-buoyant and buoyant turbulent flows are contained in the transfer spectrum and longitudinal structure functions, while all other metrics are largely similar (e.g. energy spectra, alignment characteristics of the strain-rate tensor). Also, despite the differences noted between fully buoyant and non-buoyant turbulent fields, the scalar field, in all cases, is unchanged by these. The mixing dynamics in the scalar field are found to be insensitive to the source of turbulent kinetic energy production (non-buoyant vs. buoyant).