965 resultados para Intravertebral rotation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein are described the total syntheses of all members of the transtaganolide and basiliolide natural product family. Utilitzation of an Ireland–Claisen rearrangement/Diels–Alder cycloaddition cascade (ICR/DA) allowed for rapid assembly of the transtaganolide and basiliolide oxabicyclo[2.2.2]octane core. This methodology is general and was applicable to all members of the natural product family.

A brief introduction outlines all the synthetic progress previously disclosed by Lee, Dudley, and Johansson. This also includes the initial syntheses of transtaganolides C and D, as well as basiliolide B and epi-basiliolide B accomplished by Stoltz in 2011. Lastly, we discuss our racemic synthesis of basililide C and epi-basiliolide C, which utilized an ICR/DA cascade to constuct the oxabicyclo[2.2.2]octane core and formal [5+2] annulation to form the ketene-acetal containing 7-membered C-ring.

Next, we describe a strategy for an asymmetric ICR/DA cascade, by incorporation of a chiral silane directing group. This allowed for enantioselective construction of the C8 all-carbon quaternary center formed in the Ireland–Claisen rearrangement. Furthermore, a single hydride reduction and subsequent translactonization of a C4 methylester bearing oxabicyclo[2.2.2]octane core demonstrated a viable strategy for the desired skeletal rearrangement to obtain pentacyclic transtaganolides A and B. Application of the asymmetric strategy culminated in the total syntheses of (–)-transtaganolide A, (+)-transtaganolide B, (+)-transtaganolide C, and (–)-transtaganolide D. Comparison of the optical rotation data of the synthetically derived transtaganolides to that from the isolated counterparts has overarching biosynthetic implications which are discussed.

Lastly, improvement to the formal [5+2] annulation strategy is described. Negishi cross-coupling of methoxyethynyl zinc chloride using a palladium Xantphos catalyst is optimized for iodo-cyclohexene. Application of this technology to an iodo-pyrone geranyl ester allowed for formation and isolation of the eneyne product. Hydration of the enenye product forms natural metabolite basiliopyrone. Furthermore, the eneyne product can undergo an ICR/DA cascade and form transtaganolides C and D in a single step from an achiral monocyclic precursor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文提出了一种将光学谐振腔中多次来回反射所产生的法拉第旋转积累效应转化为光学信号偏振度变化的光纤电流传感方案。这种方案的主要优点是可以克服环境等因素的扰动带来偏振态变化所产生的影响。文中对所提出方案的特性进行了简单的理论分析和模拟计算,并给出了相应的实验结果验证。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents experimental measurements of the rheological behavior of liquid-solid mixtures at moderate Reynolds (defined by the shear rate and particle diameter) and Stokes numbers, ranging from 3 ≤ Re ≤ 1.6 × 103 and 0.4 ≤ St ≤ 195. The experiments use a specifically designed Couette cylindrical rheometer that allows for probing the transition from transporting a pure liquid to transporting a dense suspension of particles. Measurements of the shear stress are presented for a wide range of particle concentration (10 to 60% in volume) and for particle to fluid density ratio between 1 and 1.05. The effective relative viscosity exhibits a strong dependence on the solid fraction for all density ratios tested. For density ratio of 1 the effective viscosity increases with Stokes number (St) for volume fractions (φ) lower than 40% and becomes constant for higher φ. When the particles are denser than the liquid, the effective viscosity shows a stronger dependance on St. An analysis of the particle resuspension for the case with a density ratio of 1.05 is presented and used to predict the local volume fraction where the shear stress measurements take place. When the local volume fraction is considered, the effective viscosity for settling and no settling particles is consistent, indicating that the effective viscosity is independent of differences in density between the solid and liquid phase. Shear stress measurements of pure fluids (no particles) were performed using the same rheometer, and a deviation from laminar behavior is observed for gap Reynolds numbers above 4× 103, indicating the presence of hydrodynamic instabilities associated with the rotation of the outer cylinder. The increase on the effective viscosity with Stokes numbers observed for mixtures with φ ≤ 30% appears to be affected by such hydrodynamic instabilities. The effective viscosity for the current experiments is considerably higher than the one reported in non-inertial suspensions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all. Only a handful of FRBs had been detected when we started this project. Taking account of the scant observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions. Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead the scattering is probably caused by the interstellar medium in the FRB's host galaxy, and indicates that this burst sits in the central region of that galaxy. Pulse durations of order $\ms$ constrain source sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear whether they were genuine astronomical signals as distinct from `perytons', clearly terrestrial radio bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when their doors opened while they were still heating. Evidence for the astronomical nature of FRBs has strengthened since our paper was published. Some bursts have been found to show linear and circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope to resume working on FRBs in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints.

The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central $\ms$ pulsar. The two orbits are highly hierarchical, namely $P_{\mathrm{orb,1}}\ll P_{\mathrm{orb,2}}$, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, $e_1/e_2$, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, $e_1\ll e_2$ for the parallel mode, while $e_1\gg e_2$ for the anti-parallel one. We show that the former precesses $\sim 10$ times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially $e_1$ oscillate on $\sim 10^3\yr$ timescale. Detectable changes would occur within $\sim 1\yr$. We demonstrate that the anti-parallel mode gets damped $\sim 10^4$ times faster than its parallel brother by any dissipative process diminishing $e_1$. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter ($Q$) to be $\sim 10^6$, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause $e_1$ to grow rather than decay.

Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.

Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, $P$, for $P\leq \epsy^3\mu$ where $\epsy$ is the material's yield strain and $\mu$ its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top $140\,\mathrm{cm}$ of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids.

Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation {\it before} the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is a comprised of three different projects within the topic of tropical atmospheric dynamics. First, I analyze observations of thermal radiation from Saturn’s atmosphere and from them, determine the latitudinal distribution of ammonia vapor near the 1.5-bar pressure level. The most prominent feature of the observations is the high brightness temperature of Saturn’s subtropical latitudes on either side of the equator. After comparing the observations to a microwave radiative transfer model, I find that these subtropical bands require very low ammonia relative humidity below the ammonia cloud layer in order to achieve the high brightness temperatures observed. We suggest that these bright subtropical bands represent dry zones created by a meridionally overturning circulation.

Second, I use a dry atmospheric general circulation model to study equatorial superrotation in terrestrial atmospheres. A wide range of atmospheres are simulated by varying three parameters: the pole-equator radiative equilibrium temperature contrast, the convective lapse rate, and the planetary rotation rate. A scaling theory is developed that establishes conditions under which superrotation occurs in terrestrial atmospheres. The scaling arguments show that superrotation is favored when the off-equatorial baroclinicity and planetary rotation rates are low. Similarly, superrotation is favored when the convective heating strengthens, which may account for the superrotation seen in extreme global-warming simulations.

Third, I use a moist slab-ocean general circulation model to study the impact of a zonally-symmetric continent on the distribution of monsoonal precipitation. I show that adding a hemispheric asymmetry in surface heat capacity is sufficient to cause symmetry breaking in both the spatial and temporal distribution of precipitation. This spatial symmetry breaking can be understood from a large-scale energetic perspective, while the temporal symmetry breaking requires consideration of the dynamical response to the heat capacity asymmetry and the seasonal cycle of insolation. Interestingly, the idealized monsoonal precipitation bears resemblance to precipitation in the Indian monsoon sector, suggesting that this work may provide insight into the causes of the temporally asymmetric distribution of precipitation over southeast Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

分析了在垂直LiNbO3晶体光轴方向加电压,光沿近光轴方向传播时,入射光偏振方向对电光调制器的影响。通过计算加电场后双折射光程差的变化和偏光振动方向的转动,画出在正交偏振镜下不同起偏方向的锥光干涉图,得到干涉图随起偏方向变化的规律:由偏光振动方向转动引起的消光区域随起偏方向的转动而转动,在起偏和检偏方向上始终消光,在与起偏方向成±45°角方向始终全透光,并且消光线的交点即感应双光轴头不随起偏方向的转动而变化,始终在折射率变大的感应主轴上。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An automatic experimental apparatus for perturbed angular correlation measurements, capable of incorporating Ge(Li) detectors as well as scintillation counters, has been constructed.

The gamma-gamma perturbed angular correlation technique has been used to measure magnetic dipole moments of several nuclear excited states in the osmium transition region. In addition, the hyperfine magnetic fields, experienced by nuclei of 'impurity' atoms embedded in ferromagnetic host lattices, have been determined for several '4d' and '5d' impurity atoms.

The following magnetic dipole moments were obtained in the osmium transition region μ2+(190Os) = 0.54 ± 0.06 nm μ4+(190Os) = 0.88 ± 0.48 nm μ2+(192Os) = 0.56 ± 0.08 nm μ2+(192Pt) = 0.56 ± 0.06 nm μ2+’(192Pt) = 0.62 ± 0.14 nm.

These results are discussed in terms of three collective nuclear models; the cranking model, the rotation-vibration model and the pairing-plus-quadrupole model. The measurements are found to be in satisfactory agreement with collective descriptions of low lying nuclear states in this region.

The following hyperfine magnetic fields of 'impurities' in ferromagnetic hosts were determined; Hint(Cd Ni) = - (64.0 ± 0.8)kG Hint(Hg Fe) = - (440 ± 105)kG Hint(Hg Co) = - (370 ± 78)kG Hint(Hg Ni) = - (86 ± 22)kG Hint(Tl Fe) = - (185 ± 70)kG Hint(Tl Co) = - (90 ± 35)kG Hint(Ra Fe) = - (105 ± 20)kG Hint(Ra Co) = - (80 ± 16)kG Hint(Ra Ni) = - (30 ± 10)kG, where in Hint(AB); A is the impurity atom embedded in the host lattice B. No quantitative theory is available for comparison. However, these results are found to obey the general systematics displayed by these fields. Several mechanisms which may be responsible for the appearance of these fields are mentioned.

Finally, a theoretical expression for time-differential perturbed angular correlation measurement, which duplicates experimental conditions is developed and its importance in data analysis is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical and experimental studies of a gas laser amplifier are presented, assuming the amplifier is operating with a saturating optical frequency signal. The analysis is primarily concerned with the effects of the gas pressure and the presence of an axial magnetic field on the characteristics of the amplifying medium. Semiclassical radiation theory is used, along with a density matrix description of the atomic medium which relates the motion of single atoms to the macroscopic observables. A two-level description of the atom, using phenomenological source rates and decay rates, forms the basis of our analysis of the gas laser medium. Pressure effects are taken into account to a large extent through suitable choices of decay rate parameters.

Two methods for calculating the induced polarization of the atomic medium are used. The first method utilizes a perturbation expansion which is valid for signal intensities which barely reach saturation strength, and it is quite general in applicability. The second method is valid for arbitrarily strong signals, but it yields tractable solutions only for zero magnetic field or for axial magnetic fields large enough such that the Zeeman splitting is much larger than the power broadened homogeneous linewidth of the laser transition. The effects of pressure broadening of the homogeneous spectral linewidth are included in both the weak-signal and strong-signal theories; however the effects of Zeeman sublevel-mixing collisions are taken into account only in the weak-signal theory.

The behavior of a He-Ne gas laser amplifier in the presence of an axial magnetic field has been studied experimentally by measuring gain and Faraday rotation of linearly polarized resonant laser signals for various values of input signal intensity, and by measuring nonlinearity - induced anisotropy for elliptically polarized resonant laser signals of various input intensities. Two high-gain transitions in the 3.39-μ region were used for study: a J = 1 to J = 2 (3s2 → 3p4) transition and a J = 1 to J = 1 (3s2 → 3p2) transition. The input signals were tuned to the centers of their respective resonant gain lines.

The experimental results agree quite well with corresponding theoretical expressions which have been developed to include the nonlinear effects of saturation strength signals. The experimental results clearly show saturation of Faraday rotation, and for the J = 1 t o J = 1 transition a Faraday rotation reversal and a traveling wave gain dip are seen for small values of axial magnetic field. The nonlinearity induced anisotropy shows a marked dependence on the gas pressure in the amplifier tube for the J = 1 to J = 2 transition; this dependence agrees with the predictions of the general perturbational or weak signal theory when allowances are made for the effects of Zeeman sublevel-mixing collisions. The results provide a method for measuring the upper (neon 3s2) level quadrupole moment decay rate, the dipole moment decay rates for the 3s2 → 3p4 and 3s2 → 3p2 transitions, and the effects of various types of collision processes on these decay rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetyltransferases and deacetylases catalyze the addition and removal, respectively, of acetyl groups to the epsilon-amino group of protein lysine residues. This modification can affect the function of a protein through several means, including the recruitment of specific binding partners called acetyl-lysine readers. Acetyltransferases, deacetylases, and acetyl-lysine readers have emerged as crucial regulators of biological processes and prominent targets for the treatment of human disease. This work describes a combination of structural, biochemical, biophysical, cell-biological, and organismal studies undertaken on a set of proteins that cumulatively include all steps of the acetylation process: the acetyltransferase MEC-17, the deacetylase SIRT1, and the acetyl-lysine reader DPF2. Tubulin acetylation by MEC-17 is associated with stable, long-lived microtubule structures. We determined the crystal structure of the catalytic domain of human MEC-17 in complex with the cofactor acetyl-CoA. The structure in combination with an extensive enzymatic analysis of MEC-17 mutants identified residues for cofactor and substrate recognition and activity. A large, evolutionarily conserved hydrophobic surface patch distal to the active site was shown to be necessary for catalysis, suggesting that specificity is achieved by interactions with the alpha-tubulin substrate that extend outside of the modified surface loop. Experiments in C. elegans showed that while MEC-17 is required for touch sensitivity, MEC-17 enzymatic activity is dispensible for this behavior. SIRT1 deacetylates a wide range of substrates, including p53, NF-kappaB, FOXO transcription factors, and PGC-1-alpha, with roles in cellular processes ranging from energy metabolism to cell survival. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an apo form and in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a beta-hairpin structure that complements the beta-sheet of the NAD^+-binding domain, covering an essentially invariant, hydrophobic surface. A comparison of the apo and cofactor bound structures revealed conformational changes throughout catalysis, including a rotation of a smaller subdomain with respect to the larger NAD^+-binding subdomain. A biochemical analysis identified key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain. DPF2 represses myeloid differentiation in acute myelogenous leukemia. Finally, we solved the crystal structure of the tandem PHD domain of human DPF2. We showed that DPF2 preferentially binds H3 tail peptides acetylated at Lys14, and binds H4 tail peptides with no preference for acetylation state. Through a structural and mutational analysis we identify the molecular basis of histone recognition. We propose a model for the role of DPF2 in AML and identify the DPF2 tandem PHD finger domain as a promising novel target for anti-leukemia therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]Este documento presenta una teoría de análisis cinemático capaz de unificar posición/orientación describiendo el movimiento de la herramienta de un robot mediante un cuaternión dual que envuelve traslación y rotación. Se desarrolla la cinemática directa de dos robots, uno redundante y otro no redundante a fin de evaluar la validez del método en ambos casos. Por último, se comparan los resultados de dicha teoría con los resultados que ofrece la conocida teoría de las matrices de transformación homogéneas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electro-optic effect in uniaxial crystals for light propagating near the optic axis with any polarization has been analyzed. The passive and the electrically induced birefringences and the rotation of polarization direction in crystals have been calculated, and the conoscopic interference figures under orthogonal polariscopes for different polarizer directions have been plotted. The extinction areas caused by the rotation of polarization direction in crystals change with the polarizer direction, but the two heads of the induced optical axes do not vary, which are always on the induced principal axis with bigger refractive index. The directions of polariscopes are always extinction, and the +/- 45 degrees directions with polarizer are always complete transmission. The conoscopic interference figures for LiNbO3 crystals have been demonstrated experimentally by rotating polariscopes directions, which accord with the theoretically calculating plots. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mössbauer technique has been used to study the nuclear hyperfine interactions and lifetimes in W182 (2+ state) and W183 (3/2- and 5/2- states) with the following results: g(5/2-)/g(2+) = 1.40 ± 0.04; g(3/2- = -0.07 ± 0.07; Q(5/2-)/Q(2+) = 0.94 ± 0.04; T1/2(3/2-) = 0.184 ± 0.005 nsec; T1/2(5/2-) >̰ 0.7 nsec. These quantities are discussed in terms of a rotation-particle interaction in W183 due to Coriolis coupling. From the measured quantities and additional information on γ-ray transition intensities magnetic single-particle matrix elements are derived. It is inferred from these that the two effective g-factors, resulting from the Nilsson-model calculation of the single-particle matrix elements for the spin operators ŝz and ŝ+, are not equal, consistent with a proposal of Bochnacki and Ogaza.

The internal magnetic fields at the tungsten nucleus were determined for substitutional solid solutions of tungsten in iron, cobalt, and nickel. With g(2+) = 0.24 the results are: |Heff(W-Fe)| = 715 ± 10 kG; |Heff(W-Co)| = 360 ± 10 kG; |Heff(W-Ni)| = 90 ± 25 kG. The electric field gradients at the tungsten nucleus were determined for WS2 and WO3. With Q(2+) = -1.81b the results are: for WS2, eq = -(1.86 ± 0.05) 1018 V/cm2; for WO3, eq = (1.54 ± 0.04) 1018 V/cm2 and ƞ = 0.63 ± 0.02.

The 5/2- state of Pt195 has also been studied with the Mössbauer technique, and the g-factor of this state has been determined to be -0.41 ± 0.03. The following magnetic fields at the Pt nucleus were found: in an Fe lattice, 1.19 ± 0.04 MG; in a Co lattice, 0.86 ± 0.03 MG; and in a Ni lattice, 0.36 ± 0.04 MG. Isomeric shifts have been detected in a number of compounds and alloys and have been interpreted to imply that the mean square radius of the Pt195 nucleus in the first-excited state is smaller than in the ground state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FRAME3D, a program for the nonlinear seismic analysis of steel structures, has previously been used to study the collapse mechanisms of steel buildings up to 20 stories tall. The present thesis is inspired by the need to conduct similar analysis for much taller structures. It improves FRAME3D in two primary ways.

First, FRAME3D is revised to address specific nonlinear situations involving large displacement/rotation increments, the backup-subdivide algorithm, element failure, and extremely narrow joint hysteresis. The revisions result in superior convergence capabilities when modeling earthquake-induced collapse. The material model of a steel fiber is also modified to allow for post-rupture compressive strength.

Second, a parallel FRAME3D (PFRAME3D) is developed. The serial code is optimized and then parallelized. A distributed-memory divide-and-conquer approach is used for both the global direct solver and element-state updates. The result is an implicit finite-element hybrid-parallel program that takes advantage of the narrow-band nature of very tall buildings and uses nearest-neighbor-only communication patterns.

Using three structures of varied sized, PFRAME3D is shown to compute reproducible results that agree with that of the optimized 1-core version (displacement time-history response root-mean-squared errors are ~〖10〗^(-5) m) with much less wall time (e.g., a dynamic time-history collapse simulation of a 60-story building is computed in 5.69 hrs with 128 cores—a speedup of 14.7 vs. the optimized 1-core version). The maximum speedups attained are shown to increase with building height (as the total number of cores used also increases), and the parallel framework can be expected to be suitable for buildings taller than the ones presented here.

PFRAME3D is used to analyze a hypothetical 60-story steel moment-frame tube building (fundamental period of 6.16 sec) designed according to the 1994 Uniform Building Code. Dynamic pushover and time-history analyses are conducted. Multi-story shear-band collapse mechanisms are observed around mid-height of the building. The use of closely-spaced columns and deep beams is found to contribute to the building's “somewhat brittle” behavior (ductility ratio ~2.0). Overall building strength is observed to be sensitive to whether a model is fracture-capable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reshaping of a Gaussian laser beam into a uniform or other intensity distribution is required for various applications. The laser beam shaping system with a radial birefringent filter is presented in this paper. With such a system the Gaussian beams can be transformed into uniform or annular beams. The theory and simulation of the proposed systems are described in detail. The primary advantage of such a system is that the out beam pro. le can be tunable with the rotation of the radial birefringent element.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

提出一种新的步进扫描投影光刻机工件台方镜不平度测量方法。以方镜平移补偿量与旋转补偿量为测量目标,使用两个双频激光干涉仪分别测量工件台在x和y方向的位置和旋转量;将方镜不平度的测量按照一定的偏移量分成若干个序列,每一个序列包括对方镜有效区域的若干次往返测量;根据所有序列的测量结果计算出方镜的旋转补偿量;为每一个序列建立临时边界条件,并据此计算出每一序列所测得的方镜粗略平移补偿量;采用三次样条插值与最小二乘法建立每一个序列间的关系,以平滑连接所有测量序列得到精确的方镜平移补偿量。结果表明,该方法用于测量方镜平