979 resultados para Intra seasonal oscillation
Resumo:
Using lessons from idealised predictability experiments, we discuss some issues and perspectives on the design of operational seasonal to inter-annual Arctic sea-ice prediction systems. We first review the opportunities to use a hierarchy of different types of experiment to learn about the predictability of Arctic climate. We also examine key issues for ensemble system design, such as: measuring skill, the role of ensemble size and generation of ensemble members. When assessing the potential skill of a set of prediction experiments, using more than one metric is essential as different choices can significantly alter conclusions about the presence or lack of skill. We find that increasing both the number of hindcasts and ensemble size is important for reliably assessing the correlation and expected error in forecasts. For other metrics, such as dispersion, increasing ensemble size is most important. Probabilistic measures of skill can also provide useful information about the reliability of forecasts. In addition, various methods for generating the different ensemble members are tested. The range of techniques can produce surprisingly different ensemble spread characteristics. The lessons learnt should help inform the design of future operational prediction systems.
Resumo:
The latest coupled configuration of the Met Office Unified Model (Global Coupled configuration 2, GC2) is presented. This paper documents the model components which make up the configuration (although the scientific description of these components is detailed elsewhere) and provides a description of the coupling between the components. The performance of GC2 in terms of its systematic errors is assessed using a variety of diagnostic techniques. The configuration is intended to be used by the Met Office and collaborating institutes across a range of timescales, with the seasonal forecast system (GloSea5) and climate projection system (HadGEM) being the initial users. In this paper GC2 is compared against the model currently used operationally in those two systems. Overall GC2 is shown to be an improvement on the configurations used currently, particularly in terms of modes of variability (e.g. mid-latitude and tropical cyclone intensities, the Madden–Julian Oscillation and El Niño Southern Oscillation). A number of outstanding errors are identified with the most significant being a considerable warm bias over the Southern Ocean and a dry precipitation bias in the Indian and West African summer monsoons. Research to address these is ongoing.
Resumo:
The Madden-Julian oscillation (MJO) is a convectively coupled 30-70 day (intraseasonal) tropical atmospheric mode that drives variations in global weather, but which is poorly simulated in most atmospheric general circulation models. Over the past two decades, field campaigns and modeling experiments have suggested that tropical atmosphere-ocean interactions may sustain or amplify the pattern of enhanced and suppressed atmospheric convection that defines the MJO, and encourage its eastward propagation through the Indian and Pacific Oceans. New observations collected during the past decade have advanced our understand of the ocean response to atmospheric MJO forcing and the resulting intraseasonal sea surface temperature (SST) fluctuations. Numerous modeling studies have revealed a considerable impact of the mean state on MJO ocean-atmosphere coupled processes, as well as the importance of resolving the diurnal cycle of atmosphere--upper-ocean interactions. New diagnostic methods provide insight to atmospheric variability and physical processes associated with the MJO, but offer limited insight on the role of ocean feedbacks. Consequently, uncertainty remains concerning the role of the ocean in MJO theory. Our understanding of how atmosphere-ocean coupled processes affect the MJO can be improved by collecting observations in poorly sampled regions of MJO activity, assessing oceanic and atmospheric drivers of surface fluxes, improving the representation of upper-ocean mixing in coupled-model simulations, designing model experiments that minimize mean-state differences, and developing diagnostic tools to evaluate the nature and role of coupled ocean-atmosphere processes over the MJO cycle.
Resumo:
The seasonal sea level variations observed from tide gauges over 1900-2013 and gridded satellite altimeter product AVISO over 1993-2013 in the northwest Pacific have been explored. The seasonal cycle is able to explain 60-90% of monthly sea level variance in the marginal seas, while it explains less than 20% of variance in the eddy-rich regions. The maximum annual and semi-annual sea level cycles (30cm and 6cm) are observed in the north of the East China Sea and the west of the South China Sea respectively. AVISO was found to underestimate the annual amplitude by 25% compared to tide gauge estimates along the coasts of China and Russia. The forcing for the seasonal sea level cycle was identified. The atmospheric pressure and the steric height produce 8-12cm of the annual cycle in the middle continental shelf and in the Kuroshio Current regions separately. The removal of the two attributors from total sea level permits to identify the sea level residuals that still show significant seasonality in the marginal seas. Both nearby wind stress and surface currents can explain well the long-term variability of the seasonal sea level cycle in the marginal seas and the tropics because of their influence on the sea level residuals. Interestingly, the surface currents are a better descriptor in the areas where the ocean currents are known to be strong. Here, they explain 50-90% of inter-annual variability due to the strong links between the steric height and the large-scale ocean currents.
Investigating the relationship between Eurasian snow and the Arctic Oscillation with data and models
Resumo:
Recent research suggests Eurasian snow-covered area (SCA) influences the Arctic Oscillation (AO) via the polar vortex. This could be important for Northern Hemisphere winter season forecasting. A fairly strong negative correlation between October SCA and the AO, based on both monthly and daily observational data, has been noted in the literature. While reproducing these previous links when using the same data, we find no further evidence of the link when using an independent satellite data source, or when using a climate model.
Resumo:
Synoptic wind events in the equatorial Pacific strongly influence the El Niño/Southern Oscillation (ENSO) evolution. This paper characterizes the spatio-temporal distribution of Easterly (EWEs) and Westerly Wind Events (WWEs) and quantifies their relationship with intraseasonal and interannual large-scale climate variability. We unambiguously demonstrate that the Madden–Julian Oscillation (MJO) and Convectively-coupled Rossby Waves (CRW) modulate both WWEs and EWEs occurrence probability. 86 % of WWEs occur within convective MJO and/or CRW phases and 83 % of EWEs occur within the suppressed phase of MJO and/or CRW. 41 % of WWEs and 26 % of EWEs are in particular associated with the combined occurrence of a CRW/MJO, far more than what would be expected from a random distribution (3 %). Wind events embedded within MJO phases also have a stronger impact on the ocean, due to a tendency to have a larger amplitude, zonal extent and longer duration. These findings are robust irrespective of the wind events and MJO/CRW detection methods. While WWEs and EWEs behave rather symmetrically with respect to MJO/CRW activity, the impact of ENSO on wind events is asymmetrical. The WWEs occurrence probability indeed increases when the warm pool is displaced eastward during El Niño events, an increase that can partly be related to interannual modulation of the MJO/CRW activity in the western Pacific. On the other hand, the EWEs modulation by ENSO is less robust, and strongly depends on the wind event detection method. The consequences of these results for ENSO predictability are discussed.
Resumo:
We analyse the ability of CMIP3 and CMIP5 coupled ocean–atmosphere general circulation models (CGCMs) to simulate the tropical Pacific mean state and El Niño-Southern Oscillation (ENSO). The CMIP5 multi-model ensemble displays an encouraging 30 % reduction of the pervasive cold bias in the western Pacific, but no quantum leap in ENSO performance compared to CMIP3. CMIP3 and CMIP5 can thus be considered as one large ensemble (CMIP3 + CMIP5) for multi-model ENSO analysis. The too large diversity in CMIP3 ENSO amplitude is however reduced by a factor of two in CMIP5 and the ENSO life cycle (location of surface temperature anomalies, seasonal phase locking) is modestly improved. Other fundamental ENSO characteristics such as central Pacific precipitation anomalies however remain poorly represented. The sea surface temperature (SST)-latent heat flux feedback is slightly improved in the CMIP5 ensemble but the wind-SST feedback is still underestimated by 20–50 % and the shortwave-SST feedbacks remain underestimated by a factor of two. The improvement in ENSO amplitudes might therefore result from error compensations. The ability of CMIP models to simulate the SST-shortwave feedback, a major source of erroneous ENSO in CGCMs, is further detailed. In observations, this feedback is strongly nonlinear because the real atmosphere switches from subsident (positive feedback) to convective (negative feedback) regimes under the effect of seasonal and interannual variations. Only one-third of CMIP3 + CMIP5 models reproduce this regime shift, with the other models remaining locked in one of the two regimes. The modelled shortwave feedback nonlinearity increases with ENSO amplitude and the amplitude of this feedback in the spring strongly relates with the models ability to simulate ENSO phase locking. In a final stage, a subset of metrics is proposed in order to synthesize the ability of each CMIP3 and CMIP5 models to simulate ENSO main characteristics and key atmospheric feedbacks.
Resumo:
The performance of three urban land surface models, run in offline mode, with their default external parameters, is evaluated for two distinctly different sites in Helsinki: Torni and Kumpula. The former is a dense city centre site with 22% vegetation, while the latter is a suburban site with over 50% vegetation. At both locations the models are compared against sensible and latent heat fluxes measured using the eddy covariance technique, along with snow depth observations. The cold climate experienced by the city causes strong seasonal variations that include snow cover and stable atmospheric conditions. Most of the time the three models are able to account for the differences between the study areas as well as the seasonal and diurnal variability of the energy balance components. However, the performances are not systematic across the modelled components, season and surface type. The net all-wave radiation is well simulated, with the greatest uncertainties related to snowmelt timing, when the fraction of snow cover has a key role, particularly in determining the surface albedo. For the turbulent fluxes, more variation between the models is seen which can partly be explained by the different methods in their calculation and partly by surface parameter values. For the sensible heat flux, simulation of wintertime values was the main problem, which also leads to issues in predicting near-surface stabilities particularly at the dense city centre site. All models have the most difficulties in simulating latent heat flux. This study particularly emphasizes that improvements are needed in the parameterization of anthropogenic heat flux and thermal parameters in winter, snow cover in spring and evapotranspiration in order to improve the surface energy balance modelling in cold climate cities.
Resumo:
Identifying predictability and the corresponding sources for the western North Pacific (WNP) summer climate in the case of non-stationary teleconnections during recent decades benefits for further improvements of long-range prediction on the WNP and East Asian summers. In the past few decades, pronounced increases on the summer sea surface temperature (SST) and associated interannual variability are observed over the tropical Indian Ocean and eastern Pacific around the late 1970s and over the Maritime Continent and western–central Pacific around the early 1990s. These increases are associated with significant enhancements of the interannual variability for the lower-tropospheric wind over the WNP. In this study, we further assess interdecadal changes on the seasonal prediction of the WNP summer anomalies, using May-start retrospective forecasts from the ENSEMBLES multi-model project in the period 1960–2005. It is found that prediction of the WNP summer anomalies exhibits an interdecadal shift with higher prediction skills since the late 1970s, particularly after the early 1990s. Improvements of the prediction skills for SSTs after the late 1970s are mainly found around tropical Indian Ocean and the WNP. The better prediction of the WNP after the late 1970s may arise mainly from the improvement of the SST prediction around the tropical eastern Indian Ocean. The close teleconnections between the tropical eastern Indian Ocean and WNP summer variability work both in the model predictions and observations. After the early 1990s, on the other hand, the improvements are detected mainly around the South China Sea and Philippines for the lower-tropospheric zonal wind and precipitation anomalies, associating with a better description of the SST anomalies around the Maritime Continent. A dipole SST pattern over the Maritime Continent and the central equatorial Pacific Ocean is closely related to the WNP summer anomalies after the early 1990s. This teleconnection mode is quite predictable, which is realistically reproduced by the models, presenting more predictable signals to the WNP summer climate after the early 1990s.
Resumo:
Seasonal forecast skill of the basinwide and regional tropical cyclone (TC) activity in an experimental coupled prediction system based on the ECMWF System 4 is assessed. As part of a collaboration between the Center for Ocean–Land–Atmosphere Studies (COLA) and the ECMWF called Project Minerva, the system is integrated at the atmospheric horizontal spectral resolutions of T319, T639, and T1279. Seven-month hindcasts starting from 1 May for the years 1980–2011 are produced at all three resolutions with at least 15 ensemble members. The Minerva system demonstrates statistically significant skill for retrospective forecasts of TC frequency and accumulated cyclone energy (ACE) in the North Atlantic (NA), eastern North Pacific (EP), and western North Pacific. While the highest scores overall are achieved in the North Pacific, the skill in the NA appears to be limited by an overly strong influence of the tropical Pacific variability. Higher model resolution improves skill scores for the ACE and, to a lesser extent, the TC frequency, even though the influence of large-scale climate variations on these TC activity measures is largely independent of resolution changes. The biggest gain occurs in transition from T319 to T639. Significant skill in regional TC forecasts is achieved over broad areas of the Northern Hemisphere. The highest-resolution hindcasts exhibit additional locations with skill in the NA and EP, including land-adjacent areas. The feasibility of regional intensity forecasts is assessed. In the presence of the coupled model biases, the benefits of high resolution for seasonal TC forecasting may be underestimated.
Resumo:
Background Ageing increases risk of respiratory infections and impairs the response to influenza vaccination. Pre- and probiotics offer an opportunity to modulate anti-viral defenses and the response to vaccination via alteration of the gut microbiota. This study investigated the effect of a novel probiotic, Bifidobacterium longum bv. infantis CCUG 52486, combined with a prebiotic, gluco-oligosaccharide (B. longum + Gl-OS), on the response to seasonal influenza vaccination in young and older subjects in a double-blind, randomized controlled trial, taking into account the influence of immunosenescence markers at baseline. Results Vaccination resulted in a significant increase in total antibody titres, vaccine-specific IgA, IgM and IgG and seroprotection to all three subunits of the vaccine in both young and older subjects, and in general, the increases in young subjects were greater. There was little effect of the synbiotic, although it tended to reduce seroconversion to the Brisbane subunit of the vaccine and the vaccine-specific IgG response in older subjects. Immunological characterization revealed that older subjects randomized to the synbiotic had a significantly higher number of senescent (CD28-CD57+) helper T cells at baseline compared with those randomized to the placebo, and they also had significantly higher plasma levels of anti-CMV IgG and a greater tendency for CMV seropositivity. Moreover, higher numbers of CD28-CD57+ helper T cells were associated with failure to seroconvert to Brisbane, strongly suggesting that the subjects randomized to the synbiotic were already at a significant disadvantage in terms of likely ability to respond to the vaccine compared with those randomized to the placebo. Conclusions Ageing was associated with marked impairment of the antibody response to influenza vaccination in older subjects and the synbiotic failed to reverse this impairment. However, the older subjects randomized to the synbiotic were at a significant disadvantage due to a greater degree of immunosenscence at baseline compared with those randomized to the placebo. Thus, baseline differences in immunosenescence between the randomized groups are likely to have influenced the outcome of the intervention, highlighting the need for detailed immunological characterization of subjects prior to interventions.
Resumo:
The variation of wind-optimal transatlantic flight routes and their turbulence potential is investigated to understand how upper-level winds and large-scale flow patterns can affect the efficiency and safety of long-haul flights. In this study, the wind-optimal routes (WORs) that minimize the total flight time by considering wind variations are modeled for flights between John F. Kennedy International Airport (JFK) in New York, New York, and Heathrow Airport (LHR) in London, United Kingdom, during two distinct winter periods of abnormally high and low phases of North Atlantic Oscillation (NAO) teleconnection patterns. Eastbound WORs approximate the JFK–LHR great circle (GC) route following northerly shifted jets in the +NAO period. Those WORs deviate southward following southerly shifted jets during the −NAO period, because eastbound WORs fly closely to the prevailing westerly jets to maximize tailwinds. Westbound WORs, however, spread meridionally to avoid the jets near the GC in the +NAO period to minimize headwinds. In the −NAO period, westbound WORs are north of the GC because of the southerly shifted jets. Consequently, eastbound WORs are faster but have higher probabilities of encountering clear-air turbulence than westbound ones, because eastbound WORs are close to the jet streams, especially near the cyclonic shear side of the jets in the northern (southern) part of the GC in the +NAO (−NAO) period. This study suggests how predicted teleconnection weather patterns can be used for long-haul strategic flight planning, ultimately contributing to minimizing aviation’s impact on the environment
Resumo:
It is argued that existing polar prediction systems do not yet meet users’ needs; and possible ways forward in advancing prediction capacity in polar regions and beyond are outlined. The polar regions have been attracting more and more attention in recent years, fuelled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with less in situ observations, and with numerous local physical processes that are less well-represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the polar observing system; the use of coupled atmosphere-sea ice-ocean models, even for short-term prediction; and insight into polar-lower latitude linkages and their role for forecasting. Given the enormity of some of the challenges ahead, in a harsh and remote environment such as the polar regions, it is argued that rapid progress will only be possible with a coordinated international effort. More specifically, it is proposed to hold a Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 in which the international research and operational forecasting community will work together with stakeholders in a period of intensive observing, modelling, prediction, verification, user-engagement and educational activities.
Resumo:
Objectives: To examine whether denture use and recurrent sores caused by ill-fitting dentures are associated with intra-oral squamous cell carcinoma (IO-SCC) in individuals exposed to tobacco. Methods: We conducted a hospital-based case-control study. The study population comprised 124 patients with IO-SCC and the same number of controls (individually paired according to gender and age) recruited from outpatient units of the same hospital. Conditional logistic regression analysis assessed the effect of denture use and recurrent oral sores by ill-fitting dentures, adjusted by covariates on the lifetime exposure to alcohol and tobacco, socioeconomic standings, and dietary patterns. Results: The use of dentures showed no association with IO-SCC [adjusted odds ratio (OR) 1.40, 95 percent confidence interval 0.51-3.87, P = 0.513] in an assessment controlled by socioeconomic position, lifetime exposure to alcohol and tobacco, and dietary patterns. However, the report of recurrent sores caused by ill-fitting dentures showed significant association with the disease (adjusted OR 4.58, 95 percent confidence interval 1.52-13.76, P = 0.007). Conclusions: The association between recurrent oral sores caused by ill-fitting dentures and squamous cell carcinoma of the mouth in smokers is in agreement with the hypothesis that the chronic physical irritation of oral mucosa contributes to the topical carcinogenic effect of tobacco, which must be taken into careful consideration in the planning of dental services for adults and the elderly.