980 resultados para Interval generalized vector spaces
Resumo:
Integration of inputs by cortical neurons provides the basis for the complex information processing performed in the cerebral cortex. Here, we propose a new analytic framework for understanding integration within cortical neuronal receptive fields. Based on the synaptic organization of cortex, we argue that neuronal integration is a systems--level process better studied in terms of local cortical circuitry than at the level of single neurons, and we present a method for constructing self-contained modules which capture (nonlinear) local circuit interactions. In this framework, receptive field elements naturally have dual (rather than the traditional unitary influence since they drive both excitatory and inhibitory cortical neurons. This vector-based analysis, in contrast to scalarsapproaches, greatly simplifies integration by permitting linear summation of inputs from both "classical" and "extraclassical" receptive field regions. We illustrate this by explaining two complex visual cortical phenomena, which are incompatible with scalar notions of neuronal integration.
Resumo:
We compare Naive Bayes and Support Vector Machines on the task of multiclass text classification. Using a variety of approaches to combine the underlying binary classifiers, we find that SVMs substantially outperform Naive Bayes. We present full multiclass results on two well-known text data sets, including the lowest error to date on both data sets. We develop a new indicator of binary performance to show that the SVM's lower multiclass error is a result of its improved binary performance. Furthermore, we demonstrate and explore the surprising result that one-vs-all classification performs favorably compared to other approaches even though it has no error-correcting properties.
Resumo:
Support Vector Machines (SVMs) perform pattern recognition between two point classes by finding a decision surface determined by certain points of the training set, termed Support Vectors (SV). This surface, which in some feature space of possibly infinite dimension can be regarded as a hyperplane, is obtained from the solution of a problem of quadratic programming that depends on a regularization parameter. In this paper we study some mathematical properties of support vectors and show that the decision surface can be written as the sum of two orthogonal terms, the first depending only on the margin vectors (which are SVs lying on the margin), the second proportional to the regularization parameter. For almost all values of the parameter, this enables us to predict how the decision surface varies for small parameter changes. In the special but important case of feature space of finite dimension m, we also show that there are at most m+1 margin vectors and observe that m+1 SVs are usually sufficient to fully determine the decision surface. For relatively small m this latter result leads to a consistent reduction of the SV number.
Resumo:
We study the relation between support vector machines (SVMs) for regression (SVMR) and SVM for classification (SVMC). We show that for a given SVMC solution there exists a SVMR solution which is equivalent for a certain choice of the parameters. In particular our result is that for $epsilon$ sufficiently close to one, the optimal hyperplane and threshold for the SVMC problem with regularization parameter C_c are equal to (1-epsilon)^{- 1} times the optimal hyperplane and threshold for SVMR with regularization parameter C_r = (1-epsilon)C_c. A direct consequence of this result is that SVMC can be seen as a special case of SVMR.
Resumo:
Support Vector Machines Regression (SVMR) is a regression technique which has been recently introduced by V. Vapnik and his collaborators (Vapnik, 1995; Vapnik, Golowich and Smola, 1996). In SVMR the goodness of fit is measured not by the usual quadratic loss function (the mean square error), but by a different loss function called Vapnik"s $epsilon$- insensitive loss function, which is similar to the "robust" loss functions introduced by Huber (Huber, 1981). The quadratic loss function is well justified under the assumption of Gaussian additive noise. However, the noise model underlying the choice of Vapnik's loss function is less clear. In this paper the use of Vapnik's loss function is shown to be equivalent to a model of additive and Gaussian noise, where the variance and mean of the Gaussian are random variables. The probability distributions for the variance and mean will be stated explicitly. While this work is presented in the framework of SVMR, it can be extended to justify non-quadratic loss functions in any Maximum Likelihood or Maximum A Posteriori approach. It applies not only to Vapnik's loss function, but to a much broader class of loss functions.
Resumo:
Regularization Networks and Support Vector Machines are techniques for solving certain problems of learning from examples -- in particular the regression problem of approximating a multivariate function from sparse data. We present both formulations in a unified framework, namely in the context of Vapnik's theory of statistical learning which provides a general foundation for the learning problem, combining functional analysis and statistics.
Resumo:
The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Labs. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and Multi-Layer Perceptron classifiers. An interesting property of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction principle. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight, are discussed in this paper. Training a SVM is equivalent to solve a quadratic programming problem with linear and box constraints in a number of variables equal to the number of data points. When the number of data points exceeds few thousands the problem is very challenging, because the quadratic form is completely dense, so the memory needed to store the problem grows with the square of the number of data points. Therefore, training problems arising in some real applications with large data sets are impossible to load into memory, and cannot be solved using standard non-linear constrained optimization algorithms. We present a decomposition algorithm that can be used to train SVM's over large data sets. The main idea behind the decomposition is the iterative solution of sub-problems and the evaluation of, and also establish the stopping criteria for the algorithm. We present previous approaches, as well as results and important details of our implementation of the algorithm using a second-order variant of the Reduced Gradient Method as the solver of the sub-problems. As an application of SVM's, we present preliminary results we obtained applying SVM to the problem of detecting frontal human faces in real images.
Resumo:
When training Support Vector Machines (SVMs) over non-separable data sets, one sets the threshold $b$ using any dual cost coefficient that is strictly between the bounds of $0$ and $C$. We show that there exist SVM training problems with dual optimal solutions with all coefficients at bounds, but that all such problems are degenerate in the sense that the "optimal separating hyperplane" is given by ${f w} = {f 0}$, and the resulting (degenerate) SVM will classify all future points identically (to the class that supplies more training data). We also derive necessary and sufficient conditions on the input data for this to occur. Finally, we show that an SVM training problem can always be made degenerate by the addition of a single data point belonging to a certain unboundedspolyhedron, which we characterize in terms of its extreme points and rays.
Resumo:
In this paper, we develop a novel index structure to support efficient approximate k-nearest neighbor (KNN) query in high-dimensional databases. In high-dimensional spaces, the computational cost of the distance (e.g., Euclidean distance) between two points contributes a dominant portion of the overall query response time for memory processing. To reduce the distance computation, we first propose a structure (BID) using BIt-Difference to answer approximate KNN query. The BID employs one bit to represent each feature vector of point and the number of bit-difference is used to prune the further points. To facilitate real dataset which is typically skewed, we enhance the BID mechanism with clustering, cluster adapted bitcoder and dimensional weight, named the BID⁺. Extensive experiments are conducted to show that our proposed method yields significant performance advantages over the existing index structures on both real life and synthetic high-dimensional datasets.
Resumo:
The preceding two editions of CoDaWork included talks on the possible consideration of densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended the Euclidean structure of the simplex to a Hilbert space structure of the set of densities within a bounded interval, and van den Boogaart (2005) generalized this to the set of densities bounded by an arbitrary reference density. From the many variations of the Hilbert structures available, we work with three cases. For bounded variables, a basis derived from Legendre polynomials is used. For variables with a lower bound, we standardize them with respect to an exponential distribution and express their densities as coordinates in a basis derived from Laguerre polynomials. Finally, for unbounded variables, a normal distribution is used as reference, and coordinates are obtained with respect to a Hermite-polynomials-based basis. To get the coordinates, several approaches can be considered. A numerical accuracy problem occurs if one estimates the coordinates directly by using discretized scalar products. Thus we propose to use a weighted linear regression approach, where all k- order polynomials are used as predictand variables and weights are proportional to the reference density. Finally, for the case of 2-order Hermite polinomials (normal reference) and 1-order Laguerre polinomials (exponential), one can also derive the coordinates from their relationships to the classical mean and variance. Apart of these theoretical issues, this contribution focuses on the application of this theory to two main problems in sedimentary geology: the comparison of several grain size distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock or sediment, like their composition
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
This resource is now obsolete and has been replaced by http://www.edshare.soton.ac.uk/5920/ This PowerPoint is an animated step-by-step guide that shows tutors how to use zappers in a teaching session. It covers starting the PC, distributing the zappers, plugging in the receiver, starting the software, running the presentation and managing voting, saving data at the end and collecting the handsets. It takes around 5 minutes to view.
Resumo:
Lecture notes in PDF
Resumo:
Lecture notes in LaTex
Resumo:
Exercises and solutions about vector fields. Diagrams for the questions are all together in the support.zip file, as .eps files