998 resultados para Intersectional approach
Resumo:
The valuation of human costs is a necessity, but this task poses many problems of method. A team made of a philosopher, a psychologist and a physician has been working with economist researchers in order to look into the meaning that the preferences announced at the time of the inquiries on human costs by QALY methods could assume. These methods are often used to obtain a valuation of the impact of a health attack on people's quality of life. The methods--in the frame of the argument assumed by the economic theory on well-being--hypothesize that people's choices depend mainly on cognitive work. The qualitative interviews show that the psychological construction process for the announced preferences largely overlap this frame. In this paper the authors hastily tackle the factors which have an effect on the preferences. They conclude that the QALY methods don't seem to be able to assess the quality of life nori to valuate the damage that the quality of life could include.
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
When a new treatment is compared to an established one in a randomized clinical trial, it is standard practice to statistically test for non-inferiority rather than for superiority. When the endpoint is binary, one usually compares two treatments using either an odds-ratio or a difference of proportions. In this paper, we propose a mixed approach which uses both concepts. One first defines the non-inferiority margin using an odds-ratio and one ultimately proves non-inferiority statistically using a difference of proportions. The mixed approach is shown to be more powerful than the conventional odds-ratio approach when the efficacy of the established treatment is known (with good precision) and high (e.g. with more than 56% of success). The gain of power achieved may lead in turn to a substantial reduction in the sample size needed to prove non-inferiority. The mixed approach can be generalized to ordinal endpoints.
Resumo:
Bordetella pertussis is the bacterial agent of whooping cough in humans. Under iron-limiting conditions, it produces the siderophore alcaligin. Released to the extracellular environment, alcaligin chelates iron, which is then taken up as a ferric alcaligin complex via the FauA outer membrane transporter. FauA belongs to a family of TonB-dependent outer membrane transporters that function using energy derived from the proton motive force. Using an in-house protocol for membrane-protein expression, purification and crystallization, FauA was crystallized in its apo form together with three other TonB-dependent transporters from different organisms. Here, the protocol used to study FauA is described and its three-dimensional structure determined at 2.3 A resolution is discussed.
Resumo:
An implicitly parallel method for integral-block driven restricted active space self-consistent field (RASSCF) algorithms is presented. The approach is based on a model space representation of the RAS active orbitals with an efficient expansion of the model subspaces. The applicability of the method is demonstrated with a RASSCF investigation of the first two excited states of indole
A variational approach for calculating Franck-Condon factors including mode-mode anharmonic coupling
Resumo:
We have implemented our new procedure for computing Franck-Condon factors utilizing vibrational configuration interaction based on a vibrational self-consistent field reference. Both Duschinsky rotations and anharmonic three-mode coupling are taken into account. Simulations of the first ionization band of Cl O2 and C4 H4 O (furan) using up to quadruple excitations in treating anharmonicity are reported and analyzed. A developer version of the MIDASCPP code was employed to obtain the required anharmonic vibrational integrals and transition frequencies
Resumo:
A comparision of the local effects of the basis set superposition error (BSSE) on the electron densities and energy components of three representative H-bonded complexes was carried out. The electron densities were obtained with Hartee-Fock and density functional theory versions of the chemical Hamiltonian approach (CHA) methodology. It was shown that the effects of the BSSE were common for all complexes studied. The electron density difference maps and the chemical energy component analysis (CECA) analysis confirmed that the local effects of the BSSE were different when diffuse functions were present in the calculations
Resumo:
We present models predicting the potential distribution of a threatened ant species, Formica exsecta Nyl., in the Swiss National Park ( SNP). Data to fit the models have been collected according to a random-stratified design with an equal number of replicates per stratum. The basic aim of such a sampling strategy is to allow the formal testing of biological hypotheses about those factors most likely to account for the distribution of the modeled species. The stratifying factors used in this study were: vegetation, slope angle and slope aspect, the latter two being used as surrogates of solar radiation, considered one of the basic requirements of F. exsecta. Results show that, although the basic stratifying predictors account for more than 50% of the deviance, the incorporation of additional non-spatially explicit predictors into the model, as measured in the field, allows for an increased model performance (up to nearly 75%). However, this was not corroborated by permutation tests. Implementation on a national scale was made for one model only, due to the difficulty of obtaining similar predictors on this scale. The resulting map on the national scale suggests that the species might once have had a broader distribution in Switzerland. Reasons for its particular abundance within the SNP might possibly be related to habitat fragmentation and vegetation transformation outside the SNP boundaries.
Resumo:
Since 2007, the Interdisciplinary Ethics Platform (Ethos) of the University of Lausanne is leading an interdisciplinary reflection on the organ donation decision. On this basis, the project "Organ transplantation between the rhetoric of the gift and a biomedical view of the body" studies the logics at stake in the organ donation decision-making process. Results highlight many tensions within practices and public discourses in the field of organ donation and transplantation and suggest lines of inquiry for future adjustments.
Resumo:
Functional connectivity (FC) as measured by correlation between fMRI BOLD time courses of distinct brain regions has revealed meaningful organization of spontaneous fluctuations in the resting brain. However, an increasing amount of evidence points to non-stationarity of FC; i.e., FC dynamically changes over time reflecting additional and rich information about brain organization, but representing new challenges for analysis and interpretation. Here, we propose a data-driven approach based on principal component analysis (PCA) to reveal hidden patterns of coherent FC dynamics across multiple subjects. We demonstrate the feasibility and relevance of this new approach by examining the differences in dynamic FC between 13 healthy control subjects and 15 minimally disabled relapse-remitting multiple sclerosis patients. We estimated whole-brain dynamic FC of regionally-averaged BOLD activity using sliding time windows. We then used PCA to identify FC patterns, termed "eigenconnectivities", that reflect meaningful patterns in FC fluctuations. We then assessed the contributions of these patterns to the dynamic FC at any given time point and identified a network of connections centered on the default-mode network with altered contribution in patients. Our results complement traditional stationary analyses, and reveal novel insights into brain connectivity dynamics and their modulation in a neurodegenerative disease.
Resumo:
In hyperdiploid acute lymphoblastic leukaemia (ALL), the simultaneous occurrence of specific aneuploidies confers a more favourable outcome than hyperdiploidy alone. Interphase (I) FISH complements conventional cytogenetics (CC) through its sensitivity and ability to detect chromosome aberrations in non-dividing cells. To overcome the limits of manual I-FISH, we developed an automated four-colour I-FISH approach and assessed its ability to detect concurrent aneuploidies in ALL. I-FISH was performed using centromeric probes for chromosomes 4, 6, 10 and 17. Parameters established for automatic nucleus selection and signal detection were evaluated (3 controls). Cut-off values were determined (10 controls, 1000 nuclei/case). Combinations of aneuploidies were considered relevant when each aneuploidy was individually significant. Results obtained in 10 ALL patients (1500 nuclei/patient) were compared with those by CC. Various combinations of aneuploidies were identified. All clones detected by CC were observed by I-FISH. I-FISH revealed numerous additional abnormal clones, ranging between 0.1% and 31.6%, based on the large number of nuclei evaluated. Four-colour automated I-FISH permits the identification of concurrent aneuploidies of prognostic significance in hyperdiploid ALL. Large numbers of cells can be analysed rapidly by this method. Owing to its high sensitivity, the method provides a powerful tool for the detection of small abnormal clones at diagnosis and during follow up. Compared to CC, it generates a more detailed cytogenetic picture, the biological and clinical significance of which merits further evaluation. Once optimised for a given set of probes, the system can be easily adapted for other probe combinations.