1000 resultados para Interoperabilidad entre sistemas de información
Resumo:
Preliminary research demonstrated the EmotiBlog annotated corpus relevance as a Machine Learning resource to detect subjective data. In this paper we compare EmotiBlog with the JRC Quotes corpus in order to check the robustness of its annotation. We concentrate on its coarse-grained labels and carry out a deep Machine Learning experimentation also with the inclusion of lexical resources. The results obtained show a similarity with the ones obtained with the JRC Quotes corpus demonstrating the EmotiBlog validity as a resource for the SA task.
Resumo:
The development of the Web 2.0 led to the birth of new textual genres such as blogs, reviews or forum entries. The increasing number of such texts and the highly diverse topics they discuss make blogs a rich source for analysis. This paper presents a comparative study on open domain and opinion QA systems. A collection of opinion and mixed fact-opinion questions in English is defined and two Question Answering systems are employed to retrieve the answers to these queries. The first one is generic, while the second is specific for emotions. We comparatively evaluate and analyze the systems’ results, concluding that opinion Question Answering requires the use of specific resources and methods.
Resumo:
The extension to new languages is a well known bottleneck for rule-based systems. Considerable human effort, which typically consists in re-writing from scratch huge amounts of rules, is in fact required to transfer the knowledge available to the system from one language to a new one. Provided sufficient annotated data, machine learning algorithms allow to minimize the costs of such knowledge transfer but, up to date, proved to be ineffective for some specific tasks. Among these, the recognition and normalization of temporal expressions still remains out of their reach. Focusing on this task, and still adhering to the rule-based framework, this paper presents a bunch of experiments on the automatic porting to Italian of a system originally developed for Spanish. Different automatic rule translation strategies are evaluated and discussed, providing a comprehensive overview of the challenge.
Resumo:
The huge amount of data available on the Web needs to be organized in order to be accessible to users in real time. This paper presents a method for summarizing subjective texts based on the strength of the opinion expressed in them. We used a corpus of blog posts and their corresponding comments (blog threads) in English, structured around five topics and we divided them according to their polarity and subsequently summarized. Despite the difficulties of real Web data, the results obtained are encouraging; an average of 79% of the summaries is considered to be comprehensible. Our work allows the user to obtain a summary of the most relevant opinions contained in the blog. This allows them to save time and be able to look for information easily, allowing more effective searches on the Web.
Resumo:
The exponential growth of the subjective information in the framework of the Web 2.0 has led to the need to create Natural Language Processing tools able to analyse and process such data for multiple practical applications. They require training on specifically annotated corpora, whose level of detail must be fine enough to capture the phenomena involved. This paper presents EmotiBlog – a fine-grained annotation scheme for subjectivity. We show the manner in which it is built and demonstrate the benefits it brings to the systems using it for training, through the experiments we carried out on opinion mining and emotion detection. We employ corpora of different textual genres –a set of annotated reported speech extracted from news articles, the set of news titles annotated with polarity and emotion from the SemEval 2007 (Task 14) and ISEAR, a corpus of real-life self-expressed emotion. We also show how the model built from the EmotiBlog annotations can be enhanced with external resources. The results demonstrate that EmotiBlog, through its structure and annotation paradigm, offers high quality training data for systems dealing both with opinion mining, as well as emotion detection.
Resumo:
In this paper we present a method to automatically identify linguistic contexts which contain possible causes of emotions or emotional states from Italian newspaper articles (La Repubblica Corpus). Our methodology is based on the interplay between relevant linguistic patterns and an incremental repository of common sense knowledge on emotional states and emotion eliciting situations. Our approach has been evaluated with respect to manually annotated data. The results obtained so far are satisfying and support the validity of the methodology proposed.
Resumo:
This paper presents the automatic extension to other languages of TERSEO, a knowledge-based system for the recognition and normalization of temporal expressions originally developed for Spanish. TERSEO was first extended to English through the automatic translation of the temporal expressions. Then, an improved porting process was applied to Italian, where the automatic translation of the temporal expressions from English and from Spanish was combined with the extraction of new expressions from an Italian annotated corpus. Experimental results demonstrate how, while still adhering to the rule-based paradigm, the development of automatic rule translation procedures allowed us to minimize the effort required for porting to new languages. Relying on such procedures, and without any manual effort or previous knowledge of the target language, TERSEO recognizes and normalizes temporal expressions in Italian with good results (72% precision and 83% recall for recognition).
Resumo:
Comunicación presentada en ACIDCA 2000, International Conference on Artificial and Computational Intelligence For Decision, Control and Automation In Engineering and Industrial Applications, Monastir, Tunisia, 22-24 March 2000.
Resumo:
In this paper we present a whole Natural Language Processing (NLP) system for Spanish. The core of this system is the parser, which uses the grammatical formalism Lexical-Functional Grammars (LFG). Another important component of this system is the anaphora resolution module. To solve the anaphora, this module contains a method based on linguistic information (lexical, morphological, syntactic and semantic), structural information (anaphoric accessibility space in which the anaphor obtains the antecedent) and statistical information. This method is based on constraints and preferences and solves pronouns and definite descriptions. Moreover, this system fits dialogue and non-dialogue discourse features. The anaphora resolution module uses several resources, such as a lexical database (Spanish WordNet) to provide semantic information and a POS tagger providing the part of speech for each word and its root to make this resolution process easier.
Resumo:
This paper describes the first participation of IR-n system at Spoken Document Retrieval, focusing on the experiments we made before participation and showing the results we obtained. IR-n system is an Information Retrieval system based on passages and the recognition of sentences to define them. So, the main goal of this experiment is to adapt IR-n system to the spoken document structure by means of the utterance splitter and the overlapping passage technique allowing to match utterances and sentences.
Resumo:
This paper presents the evaluation of a QA system for the treatment of complex temporal questions. The system was implemented in a multilayered architecture where complex temporal questions are first decomposed into simple questions, according to the temporal relations expressed in the original question. These simple questions are then processed independently by our standard Question Answering engine and their respective answers are filtered to satisfy the temporal restrictions of each simple question. The answers to the simple decomposed questions are then combined, according to the temporal relations extracted from the original complex question, to give the final answer. This evaluation was performed as a pilot task in the Spanish QA Track of the Cross Language Evaluation Forum 2004.
Resumo:
This paper presents a multi-layered Question Answering (Q.A.) architecture suitable for enhancing current Q.A. capabilities with the possibility of processing complex questions. That is, questions whose answer needs to be gathered from pieces of factual information scattered in different documents. Specifically, we have designed a layer oriented to process the different types of temporal questions. Complex temporal questions are first decomposed into simpler ones, according to the temporal relationships expressed in the original question. In the same way, the answers of each simple question are re-composed, fulfilling the temporal restrictions of the original complex question. Using this architecture, a Temporal Q.A. system has been developed. In this paper, we focus on explaining the first part of the process: the decomposition of the complex questions. Furthermore, it has been evaluated with the TERQAS question corpus of 112 temporal questions. For the task of question splitting our system has performed, in terms of precision and recall, 85% and 71%, respectively.
Resumo:
En este trabajo proponemos un algoritmo para la resolución de las descripciones definidas en español a través de la estructura del diálogo, mediante la definición de un espacio de accesibilidad anafórico. Este algoritmo está basado en la hipótesis de que la resolución de la anáfora está relacionada con la estructura del diálogo. Así, la resolución de la anáfora mejora si se especifica un espacio de accesibilidad para cada tipo descripción definida según la estructura del diálogo. La utilización de este espacio de accesibilidad anafóico reduce tanto el tiempo de procesamiento como la posibilidad de obtener un antecedente erróneo. Además, la definición de este espacio de accesibilidad depende únicamente de la propia estructura textual del diálogo.
Resumo:
In this paper we present an automatic system for the extraction of syntactic semantic patterns applied to the development of multilingual processing tools. In order to achieve optimum methods for the automatic treatment of more than one language, we propose the use of syntactic semantic patterns. These patterns are formed by a verbal head and the main arguments, and they are aligned among languages. In this paper we present an automatic system for the extraction and alignment of syntactic semantic patterns from two manually annotated corpora, and evaluate the main linguistic problems that we must deal with in the alignment process.
Resumo:
This paper tells about the recognition of temporal expressions and the resolution of their temporal reference. A proposal of the units we have used to face up this tasks over a restricted domain is shown. We work with newspapers' articles in Spanish, that is why every reference we use is in Spanish. For the identification and recognition of temporal expressions we base on a temporal expression grammar and for the resolution on a dictionary, where we have the information necessary to do the date operation based on the recognized expressions. In the evaluation of our proposal we have obtained successful results for the examples studied.