951 resultados para Intelligent Building Modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document summarizes the discussion and findings of the 4th workshop held on October 27–28, 2015 in Frankfort, Kentucky as part of the Technology Transfer Intelligent Compaction Consortium (TTICC) Transportation Pooled Fund (TPF-5(233)) study. The TTICC project is led by the Iowa Department of Transportation (DOT) and partnered by the following state DOTs: California, Georgia, Iowa, Kentucky, Missouri, Ohio, Pennsylvania, Virginia, and Wisconsin. The workshop was hosted by the Kentucky Transportation Cabinet and was organized by the Center for Earthworks Engineering Research (CEER) at Iowa State University of Science and Technology. The objective of the workshop was to generate a focused discussion to identify the research, education, and implementation goals necessary for advancing intelligent compaction for earthworks and asphalt. The workshop consisted of a review of the TTICC goals, state DOT briefings on intelligent compaction implementation activities in their state, voting and brainstorming sessions on intelligent compaction road map research and implementation needs, and identification of action items for TTICC, industry, and Federal Highway Administration (FHWA) on each of the road map elements to help accelerate implementation of the technology. Twenty-three attendees representing the state DOTs participating in this pooled fund study, the FHWA, Iowa State University, University of Kentucky, and industry participated in this workshop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structures built by animals are a widespread and ecologically important 'extended phenotype'. While its taxonomic diversity has been well described, factors affecting short-term evolution of building behavior within a species have received little experimental attention. Here we describe how, given the opportunity, wandering Drosophila melanogaster larvae often build long tunnels in agar substrates and embed their pupae within them. These embedded larvae are characterized by a longer egg-to-pupariation developmental time than larvae that pupate on the surface. Assuming that such building behaviors are likely to be energetically costly and/or time consuming, we hypothesized that they should evolve to be less pronounced under resource or time limitation. In accord with this prediction, larvae from populations evolved for 160 generations under a regime that combines larval malnutrition with limited developmental time dug shorter tunnels than larvae from control unselected populations. However, the proportion of larvae that embedded before pupation did not differ between the malnutrition-adapted and control populations, suggesting that tunnel length and likelihood of embedding before pupation are controlled by different genetic loci. The behaviors exhibited by wandering larvae of Drosophila melanogaster prior to pupation offer a model system to study evolution of animal building behaviors because the tunneling and embedding phenotypes are simple, facultative and highly variable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using numerical simulations of pairs of long polymeric chains confined in microscopic cylinders, we investigate consequences of double-strand DNA breaks occurring in independent topological domains, such as these constituting bacterial chromosomes. Our simulations show a transition between segregated and mixed state upon linearization of one of the modelled topological domains. Our results explain how chromosomal organization into topological domains can fulfil two opposite conditions: (i) effectively repulse various loops from each other thus promoting chromosome separation and (ii) permit local DNA intermingling when one or more loops are broken and need to be repaired in a process that requires homology search between broken ends and their homologous sequences in closely positioned sister chromatid.