985 resultados para Integer optimization
Resumo:
In this work, the removal of arsenic from aqueous solutions onto thermally processed dolomite is investigated. The dolomite was thermally processed (charred) at temperatures of 600, 700 and 800 degrees C for 1, 2, 4 and 8 h. Isotherm experiments were carried out on these samples over a wide pH range. A complete arsenic removal was achieved over the pH range studied when using the 800 degrees C charred dolomite. However, at this temperature, thermal degradation of the dolomite weakens its structure due to the decomposition of the magnesium carbonate, leading to a partial dissolution. For this reason, the dolomitic sorbent chosen for further investigations was the 8 h at 700 degrees C material. Isotherm studies indicated that the Langmuir model was successful in describing the process to a better extent than the Freundlich model for the As(V) adsorption on the selected charred dolomite. However, for the As(III) adsorption, the Freundlich model was more successful in describing the process. The maximum adsorption capacities of charred dolomite for arsenite and arsenate ions are 1.846 and 2.157 mg/g, respectively. It was found that both the pseudo first- and second-order kinetic models are able to describe the experimental data (R-2 > 0.980). The data suggest the charring process allows dissociation of the dolomite to calcium carbonate and magnesium oxide, which accelerates the process of arsenic oxide and arsenic carbonate precipitation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Continuous research endeavors on hard turning (HT), both on machine tools and cutting tools, have made the previously reported daunting limits easily attainable in the modern scenario. This presents an opportunity for a systematic investigation on finding the current attainable limits of hard turning using a CNC turret lathe. Accordingly, this study aims to contribute to the existing literature by providing the latest experimental results of hard turning of AISI 4340 steel (69 HRC) using a CBN cutting tool. An orthogonal array was developed using a set of judiciously chosen cutting parameters. Subsequently, the longitudinal turning trials were carried out in accordance with a well-designed full factorial-based Taguchi matrix. The speculation indeed proved correct as a mirror finished optical quality machined surface (an average surface roughness value of 45 nm) was achieved by the conventional cutting method. Furthermore, Signal-to-noise (S/N) ratio analysis, Analysis of variance (ANOVA), and Multiple regression analysis were carried out on the experimental datasets to assert the dominance of each machining variable in dictating the machined surface roughness and to optimize the machining parameters. One of the key findings was that when feed rate during hard turning approaches very low (about 0.02mm/rev), it could alone be most significant (99.16%) parameter in influencing the machined surface roughness (Ra). This has, however also been shown that low feed rate results in high tool wear, so the selection of machining parameters for carrying out hard turning must be governed by a trade-off between the cost and quality considerations.
Resumo:
This paper presents a surrogate-model based optimization of a doubly-fed induction generator (DFIG) machine winding design for maximizing power yield. Based on site-specific wind profile data and the machine’s previous operational performance, the DFIG’s stator and rotor windings are optimized to match the maximum efficiency with operating conditions for rewinding purposes. The particle swarm optimization (PSO)-based surrogate optimization techniques are used in conjunction with the finite element method (FEM) to optimize the machine design utilizing the limited available information for the site-specific wind profile and generator operating conditions. A response surface method in the surrogate model is developed to formulate the design objectives and constraints. Besides, the machine tests and efficiency calculations follow IEEE standard 112-B. Numerical and experimental results validate the effectiveness of the proposed technologies.
Resumo:
Insulated-gate bipolar transistor (IGBT) power modules find widespread use in numerous power conversion applications where their reliability is of significant concern. Standard IGBT modules are fabricated for general-purpose applications while little has been designed for bespoke applications. However, conventional design of IGBTs can be improved by the multiobjective optimization technique. This paper proposes a novel design method to consider die-attachment solder failures induced by short power cycling and baseplate solder fatigue induced by the thermal cycling which are among major failure mechanisms of IGBTs. Thermal resistance is calculated analytically and the plastic work design is obtained with a high-fidelity finite-element model, which has been validated experimentally. The objective of minimizing the plastic work and constrain functions is formulated by the surrogate model. The nondominated sorting genetic algorithm-II is used to search for the Pareto-optimal solutions and the best design. The result of this combination generates an effective approach to optimize the physical structure of power electronic modules, taking account of historical environmental and operational conditions in the field.
Resumo:
Heat sinks are widely used for cooling electronic devices and systems. Their thermal performance is usually determined by the material, shape, and size of the heat sink. With the assistance of computational fluid dynamics (CFD) and surrogate-based optimization, heat sinks can be designed and optimized to achieve a high level of performance. In this paper, the design and optimization of a plate-fin-type heat sink cooled by impingement jet is presented. The flow and thermal fields are simulated using the CFD simulation; the thermal resistance of the heat sink is then estimated. A Kriging surrogate model is developed to approximate the objective function (thermal resistance) as a function of design variables. Surrogate-based optimization is implemented by adaptively adding infill points based on an integrated strategy of the minimum value, the maximum mean square error approach, and the expected improvement approaches. The results show the influence of design variables on the thermal resistance and give the optimal heat sink with lowest thermal resistance for given jet impingement conditions.
Resumo:
Fully Homomorphic Encryption (FHE) is a recently developed cryptographic technique which allows computations on encrypted data. There are many interesting applications for this encryption method, especially within cloud computing. However, the computational complexity is such that it is not yet practical for real-time applications. This work proposes optimised hardware architectures of the encryption step of an integer-based FHE scheme with the aim of improving its practicality. A low-area design and a high-speed parallel design are proposed and implemented on a Xilinx Virtex-7 FPGA, targeting the available DSP slices, which offer high-speed multiplication and accumulation. Both use the Comba multiplication scheduling method to manage the large multiplications required with uneven sized multiplicands and to minimise the number of read and write operations to RAM. Results show that speed up factors of 3.6 and 10.4 can be achieved for the encryption step with medium-sized security parameters for the low-area and parallel designs respectively, compared to the benchmark software implementation on an Intel Core2 Duo E8400 platform running at 3 GHz.
Resumo:
A credal network associates a directed acyclic graph with a collection of sets of probability measures; it offers a compact representation for sets of multivariate distributions. In this paper we present a new algorithm for inference in credal networks based on an integer programming reformulation. We are concerned with computation of lower/upper probabilities for a variable in a given credal network. Experiments reported in this paper indicate that this new algorithm has better performance than existing ones for some important classes of networks.
Resumo:
Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.
Resumo:
This paper presents a modeling and optimization approach for sensor placement in a building zone that supports reliable environment monitoring. © 2012 ACM.
Resumo:
Energy in today's short-range wireless communication is mostly spent on the analog- and digital hardware rather than on radiated power. Hence,purely information-theoretic considerations fail to achieve the lowest energy per information bit and the optimization process must carefully consider the overall transceiver. In this paper, we propose to perform cross-layer optimization, based on an energy-aware rate adaptation scheme combined with a physical layer that is able to properly adjust its processing effort to the data rate and the channel conditions to minimize the energy consumption per information bit. This energy proportional behavior is enabled by extending the classical system modes with additional configuration parameters at the various layers. Fine grained models of the power consumption of the hardware are developed to provide awareness of the physical layer capabilities to the medium access control layer. The joint application of the proposed energy-aware rate adaptation and modifications to the physical layer of an IEEE802.11n system, improves energy-efficiency (averaged over many noise and channel realizations) in all considered scenarios by up to 44%.
Resumo:
The applicability of ultra-short-term wind power prediction (USTWPP) models is reviewed. The USTWPP method proposed extracts featrues from historical data of wind power time series (WPTS), and classifies every short WPTS into one of several different subsets well defined by stationary patterns. All the WPTS that cannot match any one of the stationary patterns are sorted into the subset of nonstationary pattern. Every above WPTS subset needs a USTWPP model specially optimized for it offline. For on-line application, the pattern of the last short WPTS is recognized, then the corresponding prediction model is called for USTWPP. The validity of the proposed method is verified by simulations.
Resumo:
The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.
Resumo:
The design optimization of cold-formed steel portal frame buildings is considered in this paper. The objective function is based on the cost of the members for the main frame and secondary members (i.e., purlins, girts, and cladding for walls and roofs) per unit area on the plan of the building. A real-coded niching genetic algorithm is used to minimize the cost of the frame and secondary members that are designed on the basis of ultimate limit state. It iis shown that the proposed algorithm shows effective and robust capacity in generating the optimal solution, owing to the population's diversity being maintained by applying the niching method. In the optimal design, the cost of purlins and side rails are shown to account for 25% of the total cost; the main frame members account for 27% of the total cost, claddings for the walls and roofs accounted for 27% of the total cost.
Resumo:
Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.