957 resultados para Inflammatory pseudotumor of the hip
Resumo:
The airway epithelium is the first point of contact in the lung for inhaled material, including infectious pathogens and particulate matter, and protects against toxicity from these substances by trapping and clearance via the mucociliary escalator, presence of a protective barrier with tight junctions and initiation of a local inflammatory response. The inflammatory response involves recruitment of phagocytic cells to neutralise and remove and invading materials and is oftern modelled using rodents. However, development of valid in vitro airway epithelial models is of great importance due to the restrictions on animal studies for cosmetic compound testing implicit in the 7th amendment to the European Union Cosmetics Directive. Further, rodent innate immune responses have fundamental differences to human. Pulmonary endothelial cells and leukocytes are also involved in the innate response initiated during pulmonary inflammation. Co-culture models of the airways, in particular where epithelial cells are cultured at air liquid interface with the presence of tight junctions and differentiated mucociliary cells, offer a solution to this problem. Ideally validated models will allow for detection of early biomarkers of response to exposure and investigation into inflammatory response during exposure. This thesis describes the approaches taken towards developing an in vitro epithelial/endothelial cell model of the human airways and identification biomarkers of response to exposure to xenobiotics. The model comprised normal human primary microvascular endothelial cells and the bronchial epithelial cell line BEAS-2B or normal human bronchial epithelial cells. BEAS-2B were chosen as their characterisation at air liquid interface is limited but they are robust in culture, thereby predicted to provide a more reliable test system. Proteomics analysis was undertaken on challenged cells to investigate biomarkers of exposure. BEAS-2B morphology was characterised at air liquid interface compared with normal human bronchial epithelial cells. The results indicate that BEAS-2B cells at an air liquid interface form tight junctions as shown by expression of the tight junction protein zonula occludens-1. To this author’s knowledge this is the first time this result has been reported. The inflammatory response of BEAS-2B (measured as secretion of the inflammatory mediators interleukin-8 and -6) air liquid interface mono-cultures to Escherichia coli lipopolysaccharide or particulate matter (fine and ultrafine titanium dioxide) was comparable to published data for epithelial cells. Cells were also exposed to polymers of “commercial interest” which were in the nanoparticle range (and referred to particles hereafter). BEAS-2B mono-cultures showed an increased secretion of inflammatory mediators after challenge. Inclusion of microvascular endothelial cells resulted in protection against LPS- and particle- induced epithelial toxicity, measured as cell viability and inflammatory response, indicating the importance of co-cultures for investigations into toxicity. Two-dimensional proteomic analysis of lysates from particle-challenged cells failed to identify biomarkers of toxicity due to assay interference and experimental variability. Separately, decreased plasma concentrations of serine protease inhibitors, and the negative acute phase proteins transthyretin, histidine-rich glycoprotein and alpha2-HS glycoprotein were identified as potential biomarkers of methyl methacrylate/ethyl methacrylate/butylacrylate treatment in rats.
Resumo:
Apoptosis is an important cell death mechanism by which multicellular organisms remove unwanted cells. It culminates in a rapid, controlled removal of cell corpses by neighboring or recruited viable cells. Whilst many of the molecular mechanisms that mediate corpse clearance are components of the innate immune system, clearance of apoptotic cells is an anti-inflammatory process. Control of cell death is dependent on competing pro-apoptotic and anti-apoptotic signals. Evidence now suggests a similar balance of competing signals is central to the effective removal of cells, through so called 'eat me' and 'don't eat me' signals. Competing signals are also important for the controlled recruitment of phagocytes to sites of cell death. Consequently recruitment of phagocytes to and from sites of cell death can underlie the resolution or inappropriate propagation of cell death and inflammation. This article highlights our understanding of mechanisms mediating clearance of dying cells and discusses those mechanisms controlling phagocyte migration and how inappropriate control may promote important pathologies. © the authors, publisher and licensee libertas academica limited.
Resumo:
Biopharmaceuticals are finding wide applications in the management of diverse disease conditions. Pulmonary delivery of proteins may constitute an effective and efficient non-invasive alternative to parenteral delivery, which is currently the main route of administration of biopharmaceutical drugs. A particular area, in which pulmonary delivery of peptides and proteins may find ready application, is in the local delivery of antimicrobial peptides and proteins to the airway, a measure that could potentially bring about improvements to currently available antipseudomonal therapies. This thesis has therefore sought to develop inhalable antimicrobial proteins in combination with antibiotics that have particularly good antimicrobial activity against Pseudomonas aeruginosa infections in the respiratory tract of people with cystic fibrosis (CF). Through process optimisation, a suitable spray drying method was developed and used for the preparation of active, inhalable dry powder formulations of the antimicrobial protein, lactoferrin, and aminoglycosides (tobramycin and gentamicin). The physicochemical properties, aerosolisation performance and the antibacterial properties of the various spray-dried formulations were assessed. In addition, a relevant in vitro cellular model was employed to investigate the potential cytotoxic and pro-inflammatory effects of the various formulations on four bronchial human epithelial cells together with their effectiveness at reducing bacterial colonies when administered on to biofilm co-cultured on the epithelial cells. It was found that following spray drying the particles obtained were mostly spherical, amorphous and possessed suitable aerosolisation characteristics. The various spray-dried antimicrobial proteins (lactoferrin or apo lactoferrin) and co-spray dried combinations of the proteins and aminoglycosides were found to exhibit bactericidal activity against planktonic and biofilms of P. aeruginosa. In general, the spray drying process was found not to significantly affect the antimicrobial activities of the protein. Treatment of the different bronchial epithelial cell lines with the antimicrobial formulations showed that the various formulations were non-toxic and that the co-spray dried combinations significantly reduced established P. aeruginosa biofilms on the four bronchial epithelial cells. Overall, the results from this thesis demonstrates that spray drying could potentially be employed to prepare inhalable antimicrobial agents comprised of proteins and antibiotics. These new combinations of proteins and aminoglycosides has promising applications in the management of P. aeruginosa in the airway of cystic fibrosis patients.
Resumo:
Background:Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease.Methods:Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass.Results:The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) -2 progressively increased.Conclusions:Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. © 2013 Hirai et al.
Resumo:
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • 6-Mercaptopurine (6-MP) and azathioprine (AZA) are both inactive prodrugs that require intracellular activation into the active 6-thioguanine nucleotides (6-TGNs). • This metabolic process undergoes three different competitive pathways that are catalysed by three different enzymes; xanthine oxidase (XO), thiopurine methyltransferase (TPMT) and inosine triphosphatase (ITPA), all of which exhibit genetic polymorphisms. • Although the impact of genetic variation in the TPMT gene on treatment outcome and toxicity has been demonstrated, the role of other polymorphisms remains less well known. WHAT THIS STUDY ADDS • New information on the allelic variation of these three enzymes (XO, TPMT and ITPA) and their influence on 6-MP/AZA metabolism and toxicity. • Confirmation of the association of TPMT polymorphism with haematological toxicity. • Identified potential genetic characteristics that may contribute to higher risk of adverse events (such as ITPA IVS2+21A→C mutation). AIMS - To examine the allelic variation of three enzymes involved in 6-mercaptopurine/azathioprine (6-MP/AZA) metabolism and evaluate the influence of these polymorphisms on toxicity, haematological parameters and metabolite levels in patients with acute lymphoblastic leukaemia (ALL) or inflammatory bowel disease (IBD). METHODS - Clinical data and blood samples were collected from 19 ALL paediatric patients and 35 IBD patients who were receiving 6-MP/AZA therapy. All patients were screened for seven genetic polymorphisms in three enzymes involved in mercaptopurine metabolism [xanthine oxidase, inosine triphosphatase (C94→A and IVS2+21A→C) and thiopurine methyltransferase]. Erythrocyte and plasma metabolite concentrations were also determined. The associations between the various genotypes and myelotoxicity, haematological parameters and metabolite concentrations were determined. RESULTS - Thiopurine methyltransferase variant alleles were associated with a preferential metabolism away from 6-methylmercaptopurine nucleotides (P = 0.008 in ALL patients, P = 0.038 in IBD patients) favouring 6-thioguanine nucleotides (6-TGNs) (P = 0.021 in ALL patients). Interestingly, carriers of inosine triphosphatase IVS2+21A→C variants among ALL and IBD patients had significantly higher concentrations of the active cytotoxic metabolites, 6-TGNs (P = 0.008 in ALL patients, P = 0.047 in IBD patients). The study confirmed the association of thiopurine methyltransferase heterozygosity with leucopenia and neutropenia in ALL patients and reported a significant association between inosine triphosphatase IVS2+21A→C variants with thrombocytopenia (P = 0.012). CONCLUSIONS - Pharmacogenetic polymorphisms in the 6-MP pathway may help identify patients at risk for associated toxicities and may serve as a guide for dose individualization.
Resumo:
The surface epithelial cells of the stomach represent a major component of the gastric barrier. A cell culture model of the gastric epithelial cell surface would prove useful for biopharmaceutical screening of new chemical entities and dosage forms. Primary cultures of guinea pig gastric mucous epithelial cells were grown on filter inserts (Transwells®) for 3 days. Tight-junction formation, assessed by transepithelial electrical resistance (TEER) and permeability of mannitol and fluorescein, was enhanced when collagen IV rather than collagen I was used to coat the polycarbonate filter. TEER for cells grown on collagen IV was close to that obtained with intact guinea pig gastric epithelium in vitro. Differentiation was assessed by incorporation of [ 3H]glucosamine into glycoprotein and by activity of NADPH oxidase, which produces superoxide. Both of these measures were greater for cells grown on filters coated with collagen I than for cells grown on plastic culture plates, but no major difference was found between cells grown on collagens I and IV. The proportion of cells, which stained positively for mucin with periodic acid Schiff reagent, was greater than 95% for all culture conditions. Monolayers grown on membranes coated with collagen IV exhibited apically polarized secretion of mucin and superoxide, and were resistant to acidification of the apical medium to pH 3.0 for 30 min. A screen of nonsteroidal anti-inflammatory drugs revealed a novel effect of diclofenac and niflumic acid in reversibly reducing permeability by the paracellular route. In conclusion, the mucous cell preparation grown on collagen IV represents a good model of the gastric surface epithelium suitable for screening procedures. © 2005 The Society for Biomolecular Screening.
Resumo:
The 'ion-trapping' hypothesis suggests that the intracellular concentration of acidic non-steroidal anti-inflammatory drugs in gastric epithelial cells could be much higher than in the gastric lumen, and that such accumulation could contribute to their gastrotoxicity. Our aim was to examine the effect of the pH of the apical medium on the apical to basal transfer of the acidic drug indomethacin (pK a 4.5) across a gastric mucous epithelial cell monolayer, and to determine whether indomethacin accumulated in cells exposed to a low apical pH. Guinea-pig gastric mucous epithelial cells were grown on porous membrane culture inserts (Transwells®) for 72 h. Transfer and accumulation of [ 14C] indomethacin were assessed by scintillation counting. Transfer of [ 3H]mannitol and measurement of trans-epithelial electrical resistance were used to assess integrity of the monolayer. Distribution of [ 14C] urea was used to estimate the intracellular volume of the monolayer. The monolayer was not disrupted by exposure of the apical face to media of pH ≥ 3, or by indomethacin. Transfer of indomethacin (12 μM) to the basal medium increased with decreasing apical medium pH. The apparent permeability of the undissociated acid was estimated to be five times that of the anion. The intracellular concentration of indomethacin was respectively 5.3, 4.1 and 4.3 times that in the apical medium at pH 5.5, 4.5 and 3.0. In conclusion, this study represents the first direct demonstration that indomethacin accumulates in gastric epithelial cells exposed to low apical pH. However, accumulation of indomethacin was moderate and the predictions of the ion-trapping hypothesis were not met, probably due to the substantial permeability of anionic indomethacin across membranes. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The resolution of inflammation is dependent on recognition and phagocytic removal of apoptotic cells by macrophages. Receptors for apoptotic cells are sensitive to degradation by human neutrophil elastase (HNE). We show in the present study that HNE cleaves macrophage cell surface CD14 and in so doing, reduces phagocytic recognition of apoptotic lymphocytic cells (Mutu 1). Using an improved method of adenovirus-mediated transfection of macrophages with the HNE inbibitor elafin, we demonstrate that elafin overexpression prevents CD14 cleavage and restores apoptotic cell recognition by macrophages. This approach of genetic modification of macrophages could be used to restore apoptotic cell recognition in inflammatory conditions. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The endothelium is the primary barrier to leukocyte recruitment at sites of inflammation. Neutrophil recruitment is directed by transendothelial gradients of IL-8 that, in vivo, are bound to the endothelial cell surface. We have investigated the identity and function of the binding site(s) in an in vitro model of neutrophil transendothelial migration. In endothelial culture supernatants, IL-8 was detected in a trimolecular complex with heparan sulfate and syndecan-1. Constitutive shedding of IL-8 in this form was increased in the presence of a neutralizing Ab to plasminogen activator inhibitor-1 (PAI-1), indicating a role for endothelial plasminogen activator in the shedding of IL-8. Increased shedding of IL-8/heparan sulfate/syndecan-1 complexes was accompanied by inhibition of neutrophil transendothelial migration, and aprotinin, a potent plasmin inhibitor, reversed this inhibition. Platelets, added as an exogenous source of PAI-1, had no effect on shedding of the complexes or neutrophil migration. Our results indicate that IL-8 is immobilized on the endothelial cell surface through binding to syndecan-1 ectodomains, and that plasmin, generated by endothelial plasminogen activator, induces the shedding of this form of IL-8. PAI-1 appears to stabilize the chemoattractant form of IL-8 at the cell surface and may represent a therapeutic target for novel anti-inflammatory strategies.
Resumo:
Phospholipid oxidation by adventitious damage generates a wide variety of products with potentially novel biological activities that can modulate inflammatory processes associated with various diseases. To understand the biological importance of oxidised phospholipids (OxPL) and their potential role as disease biomarkers requires precise information about the abundance of these compounds in cells and tissues. There are many chemiluminescence and spectrophotometric assays available for detecting oxidised phospholipids, but they all have some limitations. Mass spectrometry coupled with liquid chromatography is a powerful and sensitive approach that can provide detailed information about the oxidative lipidome, but challenges still remain. The aim of this work is to develop improved methods for detection of OxPLs by optimisation of chromatographic separation through testing several reverse phase columns and solvent systems, and using targeted mass spectrometry approaches. Initial experiments were carried out using oxidation products generated in vitro to optimise the chromatography separation parameters and mass spectrometry parameters. We have evaluated the chromatographic separation of oxidised phosphatidylcholines (OxPCs) and oxidised phosphatidylethanolamines (OXPEs) using C8, C18 and C30 reverse phase, polystyrene – divinylbenzene based monolithic and mixed – mode hydrophilic interaction (HILIC) columns, interfaced with mass spectrometry. Our results suggest that the monolithic column was best able to separate short chain OxPCs and OxPEs from long chain oxidised and native PCs and PEs. However, variation in charge of polar head groups and extreme diversity of oxidised species make analysis of several classes of OxPLs within one analytical run impractical. We evaluated and optimised the chromatographic separation of OxPLs by serially coupling two columns: HILIC and monolith column that provided us the larger coverage of OxPL species in a single analytical run.
Resumo:
Objective to evaluate the association between XPD and XRCC3 polymorphisms and oral squamous cell carcinoma (OSCC). Design the sample consisted of 54 cases of OSCC and 40 cases of inflammatory fibrous hyperplasia (IFH). Genotypes were determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results XPD-Lys/Gln was more common in IFH (n = 28; 70%) than in OSCC (n = 24; 44.4%) (OR: 0.3; p < 0.05). XPD-Gln was more frequent in high-grade lesions (0.48) than in low-grade lesions (0.21) (OR: 3.4; p < 0.05). The Gln/Gln genotype was associated with III and IV clinical stages (OR: 0.07; p < 0.05). XRCC3-Met was more frequent in OSCC (0.49) than in IFH (0.35) (OR: 2.6; p < 0.05). The Met/Met genotype was associated with the presence of metastases (OR: 8.1; p < 0.05) and with III and IV clinical stages (OR: 0.07; p < 0.05). Conclusions in this sample, the frequency of XPD-Gln in IFH suggests that this variant may protect against OSCC. The presence of the XRCC3-Met allele seems to contribute to the development of OSCC, metastases and more advanced stages in these lesions.
Resumo:
Objective to evaluate the association between XPD and XRCC3 polymorphisms and oral squamous cell carcinoma (OSCC). Design the sample consisted of 54 cases of OSCC and 40 cases of inflammatory fibrous hyperplasia (IFH). Genotypes were determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results XPD-Lys/Gln was more common in IFH (n = 28; 70%) than in OSCC (n = 24; 44.4%) (OR: 0.3; p < 0.05). XPD-Gln was more frequent in high-grade lesions (0.48) than in low-grade lesions (0.21) (OR: 3.4; p < 0.05). The Gln/Gln genotype was associated with III and IV clinical stages (OR: 0.07; p < 0.05). XRCC3-Met was more frequent in OSCC (0.49) than in IFH (0.35) (OR: 2.6; p < 0.05). The Met/Met genotype was associated with the presence of metastases (OR: 8.1; p < 0.05) and with III and IV clinical stages (OR: 0.07; p < 0.05). Conclusions in this sample, the frequency of XPD-Gln in IFH suggests that this variant may protect against OSCC. The presence of the XRCC3-Met allele seems to contribute to the development of OSCC, metastases and more advanced stages in these lesions.