964 resultados para Indeterminate Western blot


Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES Saliva has been implicated to support oral wound healing, a process that requires a transient inflammatory reaction. However, definitive proof that saliva can provoke an inflammatory response remained elusive. MATERIALS AND METHODS We investigated the ability of freshly harvested and sterile-filtered saliva to cause an inflammatory response of oral fibroblasts and epithelial cells. The expression of cytokines and chemokines was assessed by microarray, RT-PCR, immunoassays, and Luminex technology. The involvement of signaling pathways was determined by Western blot analysis and pharmacologic inhibitors. RESULTS We report that sterile-filtered whole saliva was a potent inducer of IL-6 and IL-8 in fibroblasts from the gingiva, the palate, and the periodontal ligament, but not of oral epithelial cells. This strong inflammatory response requires nuclear factor-kappa B and mitogen-activated protein kinase signaling. The pro-inflammatory capacity is heat stable and has a molecular weight of <40 kDa. Genome-wide microarrays and Luminex technology further revealed that saliva substantially increased expression of other inflammatory genes and various chemokines. To preclude that the observed pro-inflammatory activity is the result of oral bacteria, sterile-filtered parotid saliva, collected under almost aseptic conditions, was used and also increased IL-6 and IL-8 expression in gingiva fibroblasts. The inflammatory response was, furthermore, independent of MYD88, an adapter protein of the Toll-like receptor signaling pathway. CONCLUSIONS We conclude that saliva can provoke a robust inflammatory response in oral fibroblasts involving the classical nuclear factor-kappa B and mitogen-activated protein kinase signaling pathway. CLINICAL RELEVANCE Since fibroblasts but not epithelial cells show a strong inflammatory response, saliva may support the innate immunity of defect sites exposing the oral connective tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of heat stress on the functioning of the photosynthetic apparatus was examined in pea (Pisum sativum L.) plants grown at control (25 °C; 25 °C-plants) or moderately elevated temperature (35 °C; 35 °C-plants). In both types of plants net photosynthesis (Pn) decreased with increasing leaf temperature (LT) and was more than 80% reduced at 45 °C as compared to 25 °C. In the 25 °C-plants, LTs higher than 40 °C could result in a complete suppression of Pn. Short-term acclimation to heat stress did not alter the temperature response of Pn. Chlorophyll a fluorescence measurements revealed that photosynthetic electron transport (PET) started to decrease when LT increased above 35 °C and that growth at 35 °C improved the thermal stability of the thylakoid membranes. In the 25 °C-plants, but not in the 35 °C-plants, the maximum quantum yield of the photosystem II primary photochemistry, as judged by measuring the Fv/Fm ratio, decreased significantly at LTs higher than 38 °C. A post-illumination heat-induced reduction of the plastoquinone pool was observed in the 25 °C-plants, but not in the 35 °C-plants. Inhibition of Pn by heat stress correlated with a reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Western-blot analysis of Rubisco activase showed that heat stress resulted in a redistribution of activase polypeptides from the soluble to the insoluble fraction of extracts. Heat-dependent inhibition of Pn and PET could be reduced by increasing the intercellular CO2 concentration, but much more effectively so in the 35 °C-plants than in the 25 °C-plants. The 35 °C-plants recovered more efficiently from heat-dependent inhibition of Pn than the 25 °C-plants. The results show that growth at moderately high temperature hardly diminished inhibition of Pn by heat stress that originated from a reversible heat-dependent reduction of the Rubisco activation state. However, by improving the thermal stability of the thylakoid membranes it allowed the photosynthetic apparatus to preserve its functional potential at high LTs, thus minimizing the after-effects of heat stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inhibition of the net photosynthetic CO2 assimilation rate (Pn) by high temperature was examined in oak (Quercus pubescens L.) leaves grown under natural conditions. Combined measurements of gas exchange and chlorophyll (Chl) a fluorescence were employed to differentiate between inhibition originating from heat effects on components of the thylakoid membranes and that resulting from effects on photosynthetic carbon metabolism. Regardless of whether temperature was increased rapidly or gradually, Pn decreased with increasing leaf temperature and was more than 90% reduced at 45 °C as compared to 25 °C. Inhibition of Pn by heat stress did not result from reduced stomatal conductance (gs), as heat-induced reduction of gs was accompanied by an increase of the intercellular CO2 concentration (Ci). Chl a fluorescence measurements revealed that between 25 and 45 °C heat-dependent alterations of thylakoid-associated processes contributed only marginally, if at all, to the inhibition of Pn by heat stress, with photosystem II being remarkably well protected against thermal inactivation. The activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) decreased from about 90% at 25 °C to less than 30% at 45 °C. Heat stress did not affect Rubisco per se, since full activity could be restored by incubation with CO2 and Mg2+. Western-blot analysis of leaf extracts disclosed the presence of two Rubisco activase polypeptides, but heat stress did not alter the profile of the activase bands. Inhibition of Pn at high leaf temperature could be markedly reduced by artificially increasing Ci. A high Ci also stimulated photosynthetic electron transport and resulted in reduced non-photochemical fluorescence quenching. Recovery experiments showed that heat-dependent inhibition of Pn was largely, if not fully, reversible. The present results demonstrate that in Q. pubescens leaves the thylakoid membranes in general and photosynthetic electron transport in particular were well protected against heat-induced perturbations and that inhibition of Pn by high temperature closely correlated with a reversible heat-dependent reduction of the Rubisco activation state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: Survivors of premature birth suffer from long term disabilities. Synthetic PreImplantation Factor (sPIF*) modulates inflammatory responses and reverses neuroinflammation. Proteinkinase A (PKA) and protein kinase C (PKC) are crucial signaling molecules. PKA up-regulates IL-10 and brain-derived neurotrophic factor (BDNF) expression, which exert neuroprotective effects. Anti-apoptotic phosphorylation of Bad is mediated by PKA. PKC phosphorylates GAP-43, a marker for neuronal plasticity and structural recovery. We explored sPIF protective role in neuronal (N2a) cells and in a rat model of encephalopathy of prematurity. *proprietary. STUDY DESIGN: Cells were subjected to LPS and treated with sPIF or scrambled sPIF. Neonatal rats (postnatal day 3: P3) were subjected to LPS, ligation of carotid artery, and hypoxia (8% O2, 65min; n¼ 30). sPIF (0.75mg/kg twice daily) was injected (P6-13) and brains harvested at P13. sPIF’s potential and mechanisms were evaluated using immunohistochemistry, ELISA, Western Blot, and qRT-PCR. Data were analyzed using two-tailed Student’s t-test. P<0.05 wasconsidered statistically significant. RESULTS: In vitro sPIF increased PKA/PKC activity in time dependent manner (Fig. 1A). sPIF induced higher IL-10, BDNF, and GAP-43 and lower CASP3, BAD, and TNF-a mRNA levels (Fig. 1B,C). sPIF increased pGap-43/Gap-43 and decreased pBad/Bad ratio while decreasing Bad (Fig. 1 D,E). In brain tissue sPIF treatment resulted in rescued neuronal number (NeuN positive cells) and reduced apoptosis (Casp-3 positive cells) with decreased glial (Iba-1 positive cells) activation (Fig. 2A,B). The Iba-1 morphology changed from predominantly amoeboid to ramified state. Additionally sPIF increased IL-10 mRNA levels (Fig. 2C) and pGap-43/Gap-43 ratio (Fig. 2D). CONCLUSION: sPIF modulates PKA/PKC pathways reducing apoptosis and inflammatory responses while increasing neuronal plasticity and survival. The identified PKA/PKC regulatory axis strengthens the potential of sPIF in reducing the burden of prematurity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Degenerate oligonucleotide primers derived from conserved cysteine protease sequences were used in the reverse transcription polymerase chain reaction to amplify seven different cysteine protease cDNA clones, Fcp1-7, from RNA isolated from adult Fasciola hepatica. Five of the amplified F. hepatica sequences showed homology to the cathepsin L type and two were more related to the cathepsin B type. Southern blot analysis suggests that some members of this protease gene family are present in multiple copies. Northern blot analysis revealed differences in the levels of steady state mRNA expression for some of these proteases. The 5' and the 3' regions of Fcp1 were amplified using the rapid amplification of cDNA ends PCR protocol (RACE-PCR) and an additional clone was obtained by screening a lambda gt10 cDNA library using Fcp1 as a probe. The Fcp1 cDNA fragment was also subcloned in the expression vector pGEX and expressed as a glutathione-S-transferase (GST) fusion protein in Escherichia coli. Antibodies, raised in rabbits against the GST:Fcp1 fusion protein, were used in western blot analysis to examine expression in different life-cycle stages of F. hepatica. In extracts from adult and immature parasites, the immune serum recognised predominantly two proteins of 30 kDa and 38 kDa. In other parasite stages, proteins of different molecular weight were recognised by the anti-GST:Fcp1 antiserum, indicating stage-specific gene expression or processing of Fcp1. In gelatine substrate gel analysis, strong proteolytic activity could be detected at 30 kDa, but not at 38 kDa, suggesting that the 30 kDa protein represents the mature enzyme and the 38 kDa protein the proenzyme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The central nervous system GABAA/Benzodiazepine (GABAA/BZD) receptors are targets for many pharmaceutical agents and several classes of pesticides. Lindane is an organochlorine pesticide, although banned from production in the U.S. since 1977, still imported for use as an insecticide and pharmaceutically to control ectoparasites (ATSDR, 1994). Lindane functions as a GABA/BZD receptor antagonist within the central nervous system (CNS). Outside of the CNS, peripheral BZD receptors have been localized to the distal tubule of the kidney. Previous research in our laboratory has shown that incubation of renal cortical slices with lindane can produce an increase in kallikrein leakage, suggesting a distal tubular effect. In this study, Madin Darby Canine Kidney (MDCK) cells were used as an in vitro system to assess the toxicity of lindane. This purpose of this study was to determine if interactions between a renal distal tubular BZD-like receptor and lindane could lead to perturbations in renal distal cellular chloride (Cl−) transport and mitochondrial dysfunction and ultimately, cellular death. ^ Pertubations in renal chloride transport were measured indirectly by determining if lindane altered cell function responsiveness following osmotic stress. MDCK cells pre-treated with lindane and then subjected to osmotic stress remained swollen for up to 12 hours post-stress. Lindane-induced dysfunction was assessed through stress protein induction measured by Western Blot analysis. Lindane pretreatment delayed Heat Shock Protein 72 (HSP72) induction by 36 hours in osmotically stressed cells. Pretreatment with 1 × 10 −5 M LIN followed by osmotic stress elevated p38 and Stress Activated Protein Kinase (SAPK/JNK) at 15 minutes which declined at 30 minutes. Lindane appeared to have no effect on Endoplasmic Reticulum Related Kinase (ERK) induction. Lindane did not effect osmotically stressed LLC-PKI cells, a control cell line. ^ Lindane-treated MDCK cells did not exhibit necrosis. Instead, apoptosis was observed in lindane-treated MDCK cells in both time- and dose-dependent manners. LLC-PKI cells were not affected by LIN treatment. ^ To better understand the mechanism of lindane-induced apoptosis, mitochondrial function was measured. No changes in cytochrome c release or mitochondrial membrane potential were observed suggesting the mitochondrial pathway was not involved in lindane-induced apoptosis. ^ Further research will need to be conducted to determine the mechanism of lindane-induced adverse cellular effects. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Staphylococcus aureus is an important human pathogen of global health significance, whose frequency is increasing and whose persistence and versatility allow it to remain established in communities worldwide. An observed significant increase in infections, particularly in children with no predisposing risk factors or medical conditions, led to an investigation into pediatric humoral immune response to Panton-Valentine Leukocidin (PVL) and to other antigens expressed by S. aureus that represent the important classes of virulence activities. Patients who were diagnosed with staphylococcal infections were enrolled (n=60), and serum samples collected at the time of admission were analyzed using ELISA and Western blot to screen for immune response to the panel of recombinant proteins. The dominant circulating immunoglobulin titers in this pediatric population were primarily IgG, were specific, and were directed against LukF and LukS, while suppression of other important virulence factors in the presence of PVL was suggested. Patients with invasive infections (osteomyelitis, pneumonia or myositis) had higher titers against LukF and LukS compared to patients with non-invasive infections (abscesses, cellulitis or lymphadenitis). In patients with osteomyelitis, antibody responses to LukF and LukS were higher than antibody responses to any other virulence factor examined. This description of immune response to selected virulence factors of S. aureus caused by isolates of the USA300 lineage in children is novel. Antibody titers also correlated with markers of inflammation. The significance of these correlations remains to be understood.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytochromes P450 catalyze a monooxygenase reaction in which molecular oxygen is split and one oxygen atom is incorporated into the substrate. As a whole, P450 researchers have focused most of their attention on substrate metabolism and relatively little on how these enzymes are regulated. This study will focus on the regulation of two P450 isoforms known as, CYP2D6 and CYP4F11. ^ The human CYP2D gene locus contains two pseudogenes and one functional gene known as CYP2D6. This locus is highly polymorphic and produces several alternatively spliced transcripts from the pseudogene CYP2D7. My objective was to understand the role of SV5-in (splice variant 5), one of several alternative splice variants transcribed from the CYP2D7 pseudogene. My results indicate that SV5-in mRNA causes an increase in CYP2D6 protein levels and suggest that there is a role for SV5-in in regulation of CYP2D6 expression. ^ Second, CYP4F11 is a recently discovered and uncharacterized isoform, derived from the CYP4F subfamily. It metabolizes several clinically relevant drugs (i.e.—erythromycin and benzphetamine) and some endogenous inflammatory mediators (i.e.—LTB4). After evaluation of microarray data, I observed an increase in CYP4F11 mRNA levels from wild-type HCT116 cells compared to p53-null cells. Our objectives were to explore and understand this connection between p53 and CYP4F11. Microarray data were confirmed by Q-PCR, after which this effect was again observed at the protein level via Western blot and again at the promoter level via luciferase assay and chromatin immunoprecipitation. Our results indicate that p53 protein regulates expression of CYP4F11 mRNA and protein through CYP4F11 promoter binding (note that p53 binding to CYP4F11 DNA was not shown to be direct). These results signify a whole new level of regulation of drug metabolizing enzymes by p53. ^ An understanding of CYP4F11 regulation by p53 could help us understand another pathway leading to apoptosis or cell growth arrest. This can aid future drug studies and discover new drug metabolism pathways under the control of a tumor suppressor protein. An understanding of the CYP2D6 regulation pathway could illuminate the role of non-coding RNAs in the P450 field and potentially explain several inter-individual drug response variations observed in clinical medicine that are not yet completely explained by genotyping analysis. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transcription of the Bacillus anthracis structural genes for the anthrax toxin proteins and biosynthetic operon for capsule are positively regulated by AtxA, a transcription regulator with unique properties. Consistent with the role of atxA in virulence factor expression, a B. anthracis atxA-null mutant is avirulent in a murine model for anthrax. In batch culture, multiple signals impact atxA transcript levels, and the timing and steady state level of atxA expression is critical for optimal toxin and capsule synthesis. Despite the apparent complex control of atxA transcription, only one trans-acting protein, the transition state regulator AbrB, has been demonstrated to directly interact with the atxA promoter. The AbrB-binding site has been described, but additional cis-acting control sequences have not been defined. Using transcriptional lacZ fusions, electrophoretic mobility shift assays, and Western blot analysis, the cis-acting elements and trans-acting factors involved in regulation of atxA in B. anthracis strains containing either both virulence plasmids, pXO1 and pXO2, or only one plasmid, pXO1, were studied. This work demonstrates that atxA transcription from the major start site P1 is dependent upon a consensus sequence for the housekeeping sigma factor SigA, and an A+T-rich upstream element (UP-element) for RNA polymerase (RNAP). In addition, the data show that a trans-acting protein(s) other than AbrB negatively impacts atxA transcription when it binds specifically to a 9-bp palindrome within atxA promoter sequences located downstream of P1. Mutation of the palindrome prevents binding of the trans-acting protein(s) and results in a corresponding increase in AtxA and anthrax toxin production in a strain- and culture-dependent manner. The identity of the trans-acting repressor protein(s) remains elusive; however, phenotypes associated with mutation of the repressor binding site have revealed that the trans-acting repressor protein(s) indirectly controls B. anthracis development. Mutation of the repressor binding site results in misregulation and overexpression of AtxA in conditions conducive for development, leading to a marked sporulation defect that is both atxA- and pXO2-61-dependent. pXO2-61 is homologous to the sensor domain of sporulation sensor histidine kinases and is proposed to titrate an activating signal away from the sporulation phosphorelay when overexpressed by AtxA. These results indicate that AtxA is not only a master virulence regulator, but also a modulator of proper B. anthracis development. Also demonstrated in this work is the impact of the developmental regulators AbrB, Spo0A, and SigH on atxA expression and anthrax toxin production in a genetically incomplete (pXO1+, pXO2-) and genetically complete (pXO1+, pXO2+) strain background. AtxA and anthrax toxin production resulting from deletion of the developmental regulators are strain-dependent suggesting that factors on pXO2 are involved in control of atxA. The only developmental deletion mutant that resulted in a prominent and consistent strain-independent increase in AtxA protein levels was an abrB-null mutant. As a result of increased AtxA levels, there is early and increased production of anthrax toxins in an abrB-null mutant. In addition, the abrB-null mutant exhibited an increase in virulence in a murine model for anthrax. In contrast, virulence of the atxA promoter mutant was unaffected in a murine model for anthrax despite the production of 5-fold more AtxA than the abrB-null mutant. These results imply that AtxA is not the only factor impacting pathogenesis in an abrB-null mutant. Overall, this work highlights the complex regulatory network that governs expression of atxA and provides an additional role for AtxA in B. anthracis development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the United Statesand Europe. CLL patients with deletion of chromosome 17p, where the tumor suppressor p53 gene is located, often develop a more aggressive disease with poor clinical outcomes. However, the underlying mechanism remains unclear. In order to understand the underneath mechanism in vivo, I have recently generated mice with Eu-TCL1-Tg:p53-/- genotype and showed that these mice develop aggressive leukemia that resembles human CLL with 17p deletion. The Eu-TCL1-Tg:p53-/- mice developed CLL disease at 3-4 months, significantly earlier than the parental Eu-TCL1-Tg mice that developed CLL disease at 8-12 months. Flow cytometry analysis showed that the CD5+/ IgM+ cell population appeared in the peritoneal cavity, bone marrow, and the spleens of Eu-TCL1-Tg:p53-/- mice significantly earlier than that of the parental Eu-TCL1-Tg mice. Massive infiltration and accumulation of leukemia cells were found in the spleen and peritoneal cavity. In vitro study showed that the leukemia cells isolated from the Eu-TCL1-Tg:p53-/- mice were more resistant to fludarabine treatment than the leukemia cells isolated from spleens of Eu-TCL1-Tg mice. Interestingly, TUNEL assay revealed that there was higher apoptotic cell death found in the Eu-TCL1-Tg spleen tissue compared to the spleens of the Eu-TCL1-Tg:p53-/- mice, suggesting that the loss of p53 compromises the apoptotic process in vivo, and this might in part explain the drug resistant phenotype of CLL cells with 17p-deletion. In the present study, we further demonstrated that the p53 deficiency in the TCL1 transgenic mice resulted in significant down-regulation of microRNAs miR-15a and miR16-1, associated with a substantial up-regulation of Mcl-1, suggesting that the p53-miR15a/16-Mcl-1 axis may play an important role in CLL pathogenesis. Interestingly, we also found that loss of p53 resulted in a significant decrease in expression of the miR-30 family especially miR-30d in leukemia lymphocytes from the Eu-TCL1-Tg:p53-/- mice. Such down-regulation of those microRNAs and up-regulation of Mcl-1 were also found in primary leukemia cells from CLL patients with 17p deletion. To further exam the biological significance of decrease in the miR-30 family in CLL, we investigated the potential involvement of EZH2 (enhancer of zeste homolog 2), a component of the Polycomb repressive complex known to be a downstream target of miR-30d and plays a role in disease progression in several solid cancers. RT-PCR and western blot analyses showed that both EZH2 mRNA transcript and protein levels were significantly increased in the lymphocytes of Eu-TCL1-Tg:p53-/- mice relative to Eu-TCL1-Tg mice. Exposure of leukemia cells isolated from Eu-TCL1-Tg:p53-/- mice to the EZH2 inhibitor 3-deazaneplanocin (DZNep) led to induction of apoptosis, suggesting EZH2 may play a role in promoting CLL cell survival and this may contribute to the aggressive phenotype of CLL with loss of p53. Our study has created a novel CLL mouse model, and suggests that the p53/miR15a/16-Mcl-1 axis & p53/miR30d-EZH2 may contribute to the aggressive phenotype and drug resistance in CLL cells with loss of p53.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A majority of persons who have sustained spinal cord injury (SCI) develop chronic pain. While most investigators have assumed that the critical mechanisms underlying neuropathic pain after SCI are restricted to the central nervous system (CNS), recent studies showed that contusive SCI results in a large increase in spontaneous activity in primary nociceptors, which is correlated significantly with mechanical allodynia and thermal hyperalgesia. Upregulation of ion channel transient receptor vanilloid 1 (TRPV1) has been observed in the dorsal horn of the spinal cord after SCI, and reduction of SCI-induced hyperalgesia by a TRPV1 antagonist has been claimed. However, the possibility that SCI enhances TRPV1 expression and function in nociceptors has not been tested. I produced contusive SCI at thoracic level T10 in adult, male rats and harvested lumbar (L4/L5) dorsal root ganglia (DRG) from sham-treated and SCI rats 3 days and 1 month after injury, as well as from age-matched naive control rats. Whole-cell patch clamp recordings were made from small (soma diameter <30 >μm) DRG neurons 18 hours after dissociation. Capsaicin-induced currents were significantly increased 1 month, but not 3 days, after SCI compared to neurons from control animals. In addition, Ca2+ transients imaged during capsaicin application were significantly greater 1 month after SCI. Western blot experiments indicated that expression of TRPV1 protein in DRG is also increased 1 month after SCI. A major role for TRPV1 channels in pain-related behavior was indicated by the ability of a specific TRPV1 antagonist, AMG9810, to reverse SCI-induced hypersensitivity of hindlimb withdrawal responses to heat and mechanical stimuli. Similar reversal of behavioral hypersensitivity was induced by intrathecal delivery of oligodeoxynucleotides antisense to TRPV1, which knocked down TRPV1 protein and reduced capsaicin-evoked currents. TRPV1 knockdown also decreased the incidence of spontaneous activity in dissociated nociceptors after SCI. Limited activation of TRPV1 was found to induce prolonged repetitive firing without accommodation or desensitization, and this effect was enhanced by SCI. These data suggest that SCI enhances TRPV1 expression and function in primary nociceptors, increasing the excitability and spontaneous activity of these neurons, thus contributing to chronic pain after SCI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Use of Echogenic Immunoliposomes for Delivery of both Drug and Stem Cells for Inhibition of Atheroma Progression By Ali K. Naji B.S. Advisor: Dr. Melvin E. Klegerman PhD Background and significance: Echogenic liposomes can be used as drug and cell delivery vehicles that reduce atheroma progression. Vascular endothelial growth factor (VEGF) is a signal protein that induces vasculogenesis and angiogenesis. VEGF functionally induces migration and proliferation of endothelial cells and increases intracellular vascular permeability. VEGF activates angiogenic transduction factors through VEGF tyrosine kinase domains in high-affinity receptors of endothelial cells. Bevacizumab is a humanized monoclonal antibody specific for VEGF-A which was developed as an anti-tumor agent. Often, anti-VEGF agents result in regression of existing microvessels, inhibiting tumor growth and possibly causing tumor shrinkage with time. During atheroma progression neovasculation in the arterial adventitia is mediated by VEGF. Therefore, bevacizumab may be effective in inhibiting atheroma progression. Stem cells show an ability to inhibit atheroma progression. We have previously demonstrated that monocyte derived CD-34+ stem cells that can be delivered to atheroma by bifunctional-ELIP ( BF-ELIP) targeted to Intercellular Adhesion Molecule-1 (ICAM-1) and CD-34. Adhesion molecules such as ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1) are expressed by endothelial cells under inflammatory conditions. Ultrasound enhanced liposomal targeting provides a method for stem cell delivery into atheroma and encapsulated drug release. This project is designed to examine the ability of echogenic liposomes to deliver bevacizumab and stem cells to inhibit atheroma progression and neovasculation with and without ultrasound in vitro and optimize the ultrasound parameters for delivery of bevacizumab and stem cells to atheroma. V Hypotheses: Previous studies showed that endothelial cell VEGF expression may relate to atherosclerosis progression and atheroma formation in the cardiovascular system. Bevacizumab-loaded ELIP will inhibit endothelial cell VEGF expression in vitro. Bevacizumab activity can be enhanced by pulsed Doppler ultrasound treatment of BEV-ELIP. I will also test the hypothesis that the transwell culture system can serve as an in vitro model for study of US-enhanced targeted delivery of stem cells to atheroma. Monocyte preparations will serve as a source of CD34+ stem cells. Specific Aims: Induce VEGF expression using PKA and PKC activation factors to endothelial cell cultures and use western blot and ELISA techniques to detect the expressed VEGF.  Characterize the relationship between endothelial cell proliferation and VEGF expression to develop a specific EC culture based system to demonstrate BEV-ELIP activity as an anti-VEGF agent. Design a cell-based assay for in vitro assessment of ultrasound-enhanced bevacizumab release from echogenic liposomes.  Demonstrate ultrasound delivery enhancement of stem cells by applying different types of liposomes on transwell EC culture using fluorescently labeled monocytes and detect the effect on migration and attachment rate of these echogenic liposomes with and without ultrasound in vitro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanisms of multidrug resistance (MDR) were studied in two independent MDR sublines (AdR1.2 and SRA1.2) derived from the established human colon carcinoma cell line LoVo. AdR1.2 was developed by long-term continuous exposure of the cells to adriamycin (AdR) in stepwise increments of concentration, while SRA1.2 was selected by repetitive pulse treatments with AdR at a single concentration. In this dissertation, the hypothesis that the mechanism of drug resistance in SRA1.2 is different than that in AdR1.2 is tested. While SRA1.2 demonstrated similar biological characteristics when compared to the parental LoVo, AdR1.2 exhibited remarkable alterations in biological properties. The resistance phenotype of AdR1.2 was reversible when the cells were grown in the drug-free medium whereas SRA1.2 maintained its resistance for at least 10 months under similar conditions. Km and Vmax of carrier-mediated facilitated diffusion AdR transport were similar among the three lines. However, both resistant sublines exhibited an energy-dependent drug efflux. AdR1.2 appeared to possess an activated efflux pump, and a decreased nucleus-binding of AdR, whereas SRA1.2 showed merely a lower affinity in binding of AdR to the nuclei. Southern blot analysis showed no amplification of the MDR1 gene in either of the two resistant subclones. However, Western blot analysis using the C219 monoclonal antibody against P170 glycoprotein detected a Mr 150-kDa plasma protein (P150) in AdR1.2 but not in SRA1.2 or in the parental LoVo. In vitro phosphorylation studies revealed that P150 was a phosphoprotein; its phosphorylation was Mg$\sp{2+}$-dependent and could be enhanced by verapamil, an agent capable of increasing intracellular AdR accumulation in AdR1.2 cells. The phosphorylation studies also revealed elevated phosphorylation of a Mr 66-kDa plasma membrane protein that was detectable in the AdR1.2 revertant and in AdR1.2 when verapamil was present, suggesting that hyperphosphorylation of the Mr 66-kDa protein may be related to the reversal of MDR. SDS-PAGE of the plasma membrane protein demonstrated overproduction of a Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa protein was not immunoreactive with C219, but its absence in the AdR1.2 revertant and the parental LoVo suggests that it is an MDR-related plasma membrane protein. In conclusion, the results from this study support the author's hypothesis that the mechanisms responsible for "Acquired" and "Natural" MDR are not identical. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The neuropeptide somatostatin is a widely distributed general inhibitor of endocrine, exocrine, gastrointestinal and neural functions. The biological actions of somatostatin are initiated by interaction with high affinity, plasma membrane somatostatin receptors (sst receptors). Five sst receptor subtypes have been cloned and sequence analysis shows they are all members of the G protein coupled receptor superfamily. The G proteins play a pivotal role in sst receptor signal transduction and the specificity of somatostatin receptor-G protein coupling defines the possible range of cellular responses. However, the data for endogenous sst receptor and G protein coupling is very limited, and even when it is available, the sst receptor subtypes involved in G protein coupling and signal transduction are unknown due to the expression of multiple sst receptor subtypes in target cell lines or tissues of somatostatin.^ In an effort to characterize each individual sst receptor subtypes, antisera against unique C-terminal regions of different sst receptor subtypes have been developed in our lab. In this report, antisera made against the sst1, sst2A and sst4 receptors are characterized. They are highly specific to their corresponding receptors and efficiently immunoprecipitate the sst receptors. Using these antibodies, the cell lines expressing these sst receptor subtypes were identified with both immunoprecipitation and Western blot methods. The development of sst receptor subtype specific antibodies make it possible to determine the specificity of the sst receptor subtype and G protein coupling in target cells or tissues expressing multiple sst receptors, two questions were addressed by this thesis: (1) whether different cellular environments affect receptor subtype and G protein coupling; (2) whether different sst receptors couple to different G proteins in similar cellular environments.^ Taken together our findings, both sst1 and sst2A receptors couple with G$\alpha\sb{\rm i1},$ G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in CHO cells, G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in GH$\sb4$C$\sb1$ cells. Further, sst2A receptors couple with G$\alpha\sb{\rm i1},$ G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in AR4-2J cells while sst4 receptors couple with G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in CHO cells. Therefore, the G protein coupling of the same sst receptors in different cell lines is basically similar in that they all couple with multiple $\alpha$-subunits of the G$\rm \sb{i}$ proteins, suggesting cellular environment has little effect on receptor and G protein coupling. Moreover, different sst receptors have similar G protein coupling specificities in the same cell line, suggesting components other than receptor and G$\alpha$ subunits in the signal transduction pathways may contribute to specific functions of each sst receptor subtype. This series of experiments represent a novel approach in dissecting signal transduction pathways and may have general application in the field. Furthermore, this is the first systematic study of sst receptor subtype and G protein $\alpha$-subunit interaction in both transfected cells and in normal cell lines. The information generated will be very useful in our understanding of sst receptor signal transduction pathways and in directing future sst receptor research. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies on the transcriptional regulation of serum amyloid A1 (SAA1) gene, a liver specific acute-phase gene, identified a regulatory element in its promoter that functioned to repress (SAA1) gene transcription in nonliver cells. This silencer element interacts with a nuclear protein that is detectable in HeLa cells, fibroblasts and placental tissues but not in liver or liver-derived cells. As the expression pattern of this repressor is consistent with its potential regulatory role in repressing SAA1 expression, and that many other liver gene promoters also contain this repressor binding site, we sought to investigate whether this repressor may have a broader functional role in repressing liver genes. ^ We have utilized protein purification, cell culture, transient and stable gene transfection, and molecular biology approaches to identify this protein and investigate its possible function in the regulation of (SAA1) and other liver genes. Analyses of amino acid sequence of the purified nuclear protein, and western blot and gel shift studies identified the repressor as transcription factor AP-2 or AP-2-like protein. Using transient transfection of DNA into cultured cells, we demonstrate that AP-2 can indeed function as a repressor to inhibit transcription of SAA1 gene promoter. This conclusion is supported by the following experimental results: (1) overexpression of AP-2 in hepatoma cells inhibits conditioned medium (CM)-induced expression of SAA1 promoter; (2) binding of AP-2 to the SAA1 promoter is required for AP-2 repression function; (3) one mechanism by which AP-2 inhibits SAA1 may be by antagonizing the activation function of the strong transactivator NFκB; (4) mutation of AP-2 binding sites results in derepression of SAM promoter in HeLa cells; and (5) inhibition of endogenous AP-2 activity by a dominant-negative mutant abolishes AP-2's inhibitory effect on SAM promoter in HeLa cells. In addition to the SAM promoter, AP-2 also can bind to the promoter regions of six other liver genes tested, suggesting that it may have a broad functional role in restricting the expression of many liver genes in nonliver cells. Consistent with this notion, ectopic expression of AP-2 also represses CM-mediated activation of human third component of complement 3 promoter. Finally, in AP-2-expressing stable hepatoma cell lines, AP-2 inhibits not only the expression of endogenous SAA, but also the expression of several other endogenous liver genes including albumin, α-fetoprotein. ^ Our findings that AP-2 has the ability to repress the expression of liver genes in nonliver cells opens a new avenue of investigation of negative regulation of gene transcription, and should improve our understanding of tissue-specific expression of liver genes. In summary, our data provide evidence suggesting a novel role of AP-2 as a repressor, inhibiting the expression of liver genes in nonliver cells. Thus, the tissue-specific expression of AP-2 may constitute an important mechanism contributing to the liver-specific expression of liver genes. ^