985 resultados para Immunohistochemical expression of p53, p21, p16INK4a, cyclin D1, and Ki-67


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compared by immunocytochemistry and immunoblotting the expression and distribution of adhesion molecules participating in cell-matrix and cell-cell interactions during embryonic development and regeneration of rat liver. Fibronectin and the fibronectin receptor, integrin alpha 5 beta 1, were distributed pericellularly and expressed at a steady level during development from the 16th day of gestation and in neonate and adult liver. AGp110, a nonintegrin fibronectin receptor was first detected on the 17th day of gestation in a similar, nonpolarized distribution on parenchymal cell surfaces. At that stage of development haemopoiesis is at a peak in rat liver and fibronectin and receptors alpha 5 beta 1 and AGp110 were prominent on the surface of blood cell precursors. During the last 2 d of gestation (20th and 21st day) hepatocytes assembled around lumina. AGp110 was initially depolarized on the surface of these acinar cells but then confined to the lumen and to newly-formed bile canaliculi. At birth, a marked increase occurred in the canalicular expression of AGp110 and in the branching of the canalicular network. Simultaneously, there was enhanced expression of ZO-1, a protein component of tight junctions. On the second day postpartum, presence of AGp110 and of protein constituents of desmosomes and intermediate junctions, DGI and E-cadherin, respectively, was notably enhanced in cellular fractions insoluble in nonionic detergents, presumably signifying linkage of AGp110 with the cytoskeleton and assembly of desmosomal and intermediate junctions. During liver regeneration after partial hepatectomy, AGp110 remained confined to apical surfaces, indicating a preservation of basic polarity in parenchymal cells. A decrease in the extent and continuity of the canalicular network occurred in proliferating parenchyma, starting 24 h after resection in areas close to the terminal afferent blood supply of portal veins and spreading to the rest of the liver within the next 24 h. Distinct acinar structures, similar to the ones in prenatal liver, appeared at 72 h after hepatectomy. Restoration of the normal branching of the biliary tree commenced at 72 h. At 7 d postoperatively acinar formation declined and one-cell-thick hepatic plates, as in normal liver, were observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-infarcted myocardium after coronary occlusion undergoes progressive morphological and functional changes. The purpose of this study was to determine whether non-infarcted myocardium exhibits (1) alteration of the substrate pattern of myocardial metabolism and (2) concomitant changes in the expression of regulatory proteins of glucose and fatty acid metabolism. Myocardial infarction was induced in rats by ligation of the left coronary artery. One day and eight weeks after coronary occlusion, glucose and palmitate oxidation were measured. Expression of selected proteins of metabolism were determined one day to 12 weeks after infarction. One day after coronary occlusion no difference of glucose and palmitate oxidation was detectable, whereas after eight weeks, glucose oxidation was increased (+84%, P<0.05) and palmitate oxidation did not change significantly (-19%, P=0.07) in infarct-containing hearts, compared with hearts from sham-operated rats. One day after coronary occlusion, myocardial mRNA expression of the glucose transporter GLUT-1 was increased (+86%, P<0.05) and the expression of GLUT-4 was decreased (-28%, P<0.05) in surviving myocardium of infarct-containing hearts. Protein level of GLUT-1 was increased (+81%, P<0.05) and that of GLUT-4 slightly, but not significantly, decreased (-16%, P=NS). mRNA expressions of heart fatty acid binding protein (H-FABP), and of medium chain acyl-CoA dehydrogenase (MCAD), were decreased by 36% (P<0.05) and 35% (P=0. 07), respectively. Eight weeks after acute infarction, the left ventricle was hypertrophied and, at this time-point, there was no difference in the expression of GLUT-1 and GLUT-4 between infarcted and sham-operated hearts. However, myocardial mRNA and protein content of MCAD were decreased by 30% (P<0.01) and 27% (P<0.05), respectively. In summary, in surviving myocardium, glucose oxidation was increased eight weeks after coronary occlusion. Concomitantly, mRNA and protein expression of MCAD were decreased, compatible with a role of altered expression of regulatory proteins of metabolism in post-infarction modification of myocardial metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression patterns of the three different peroxisome proliferator-activated receptor (PPAR) isotypes have been determined during rat embryonic development by in situ hybridization. The expression of PPARalpha starts late in development, with increasing levels in organs such as liver, kidney, intestine, and pancreas, in which it will also be present later in adulthood to regulate its specific target genes. PPARalpha is also transiently expressed in the embryonic epidermis and central nervous system. PPARgamma presents a very restricted pattern of expression, being strongly expressed in brown adipose tissue, in which differentiation it has been shown to participate. Like PPARalpha, it is also expressed transiently in the central nervous system. Interestingly, PPARalpha, -beta and -gamma are coexpressed at high levels in brown adipose tissue. Finally, the high and ubiquitous expression of PPARbeta suggests some fundamental role(s) that this receptor might play throughout development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltage-gated sodium channels (VGSCs), which gives rise to allodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC α-subunits (Na(v)), in particular Na(v)1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Na(v)1.7 and Na(v)1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in sham-operated animals, seven days after SNI and 48h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7±2.7% and 55.0±3.6% of Nedd4-2-positive cells are co-labeled with Na(v)1.7 and Na(v)1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9±1.9% to 33.5±0.7% (p<0.01) and the total Nedd4-2 protein to 44%±0.13% of its basal level (p<0.01, n=4 animals in each group, mean±SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Na(v)s involved in the hyperexcitability associated with peripheral nerve injuries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Peeling skin disease (PSD), a generalized inflammatory form of peeling skin syndrome, is caused by autosomal recessive nonsense mutations in the corneodesmosin gene (CDSN). OBJECTIVES: To investigate a novel mutation in CDSN. METHODS: A 50-year-old white woman showed widespread peeling with erythema and elevated serum IgE. DNA sequencing, immunohistochemistry, Western blot and real-time polymerase chain reaction analyses of skin biopsies were performed in order to study the genetics and to characterize the molecular profile of the disease. RESULTS: Histology showed hyperkeratosis and acanthosis of the epidermis, and inflammatory infiltrates in the dermis. DNA sequencing revealed a homozygous mutation leading to a premature termination codon in CDSN: p.Gly142*. Protein analyses showed reduced expression of a 16-kDa corneodesmosin mutant in the upper epidermal layers, whereas the full-length protein was absent. CONCLUSIONS: These results are interesting regarding the genotype-phenotype correlations in diseases caused by CDSN mutations. The PSD-causing CDSN mutations identified heretofore result in total corneodesmosin loss, suggesting that PSD is due to full corneodesmosin deficiency. Here, we show for the first time that a mutant corneodesmosin can be stably expressed in some patients with PSD, and that this truncated protein is very probably nonfunctional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To characterize the modifications of gene expression of adenosine receptors (AR), TRPC channels, HIF-1α and iNOS during the early cardiogenesis in response to chronic hypoxia exposure. Methods: 4-day-old chick embryos were subjected in ovo to 6H, 12H and 24H of hypoxia (10% O2). The mRNA expression was quantified by RT-qPCR. Results: The targeted genes were found to be expressed at mRNA level with a differential expression pattern within the heart. Hypoxia has no significant effect on mRNA expression of ARs, TRPCs channels and iNOS within the heart. By contrast, HIF-1α mRNA expression shows a tendency to be down-regulated by hypoxia. Conclusion: These results suggest that an intrauterine oxygen lack does not significantly affect expression of genes involved in adenosine signaling and in calcium handling by store operated channels (TRPC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The timely regulation of gonadotropin-releasing hormone (GnRH) secretion requires a GABAergic signal. We hypothesized that GEC1, a protein promoting the transport of GABA(A) receptors, could represent a circadian effector in GnRH neurons. First, we demonstrated that gec1 is co-expressed with the GABA(A) receptor in hypothalamic rat GnRH neurons. We also confirmed that the clock genes per1, cry1 and bmal1 are expressed and oscillate in GnRH secreting GnV-3 cells. Then we could show that gec1 is expressed in GnV-3 cells, and oscillates in a manner temporally related to the oscillations of the clock transcription factors. Furthermore, we could demonstrate that these oscillations depend upon Per1 expression. Finally, we observed that GABA(A) receptor levels at the GnV-3 cell membrane are timely modulated following serum shock. Together, these data demonstrate that gec1 expression is dependent upon the circadian clock machinery in GnRH-expressing neurons, and suggest for the first time that the level of GABA(A) receptor at the cell membrane may be under timely regulation. Overall, they provide a potential mechanism for the circadian regulation of GnRH secretion by GABA, and may also be relevant to the general understanding of circadian rhythms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting. RESEARCH DESIGN AND METHODS: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS: Pancreatic beta-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor kappaB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo beta-cell apoptosis. CONCLUSIONS: Fragment N efficiently increases the overall resistance of beta-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isogenic Staphylococcus aureus strains with different capacities to produce sigma(B) activity were analyzed for their ability to attach to fibrinogen- or fibronectin-coated surfaces or platelet-fibrin clots and to cause endocarditis in rats. In comparison to the sigma(B)-deficient strain, BB255, which harbors an rsbU mutation, both rsbU-complemented and sigma(B)-overproducing derivatives exhibited at least five times greater attachment to fibrinogen- and fibronectin-coated surfaces and showed increased adherence to platelet-fibrin clots. No differences in adherence were seen between BB255 and a DeltarsbUVWsigB isogen. Northern blotting analyses revealed that transcription of clfA, encoding fibrinogen-binding protein clumping factor A, and fnbA, encoding fibronectin-binding protein A, were positively influenced by sigma(B). Sigma(B) overproduction resulted in a statistically significant increase in positive spleen cultures and enhanced bacterial densities in both the aortic vegetations and spleens at 16 h postinoculation. In contrast, at 72 h postinoculation, tissues infected with the sigma(B) overproducer had lower bacterial densities than did those infected with BB255. These results suggest that although sigma(B) appears to increase the adhesion of S. aureus to various host cell-matrix proteins in vitro, it has limited effect on pathogenesis in the rat endocarditis model. Sigma(B) appears to have a transient enhancing effect on bacterial density in the early stages of infection that is lost during progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superantigens are bacterial or viral products that polyclonally activate T cells bearing certain TCR beta chain variable elements. For instance, Vbeta8+ T cells proliferate in response to staphylococcal enterotoxin B (SEB) in vivo and then undergo Fas- and/or TNF-mediated apoptosis. We have recently shown that apoptotic SEB-reactive T cells express the B cell marker B220. Here we report the identification of a novel subset of CD4+ B220+ T cell blasts that are the precursors of these apoptotic cells in SEB-immunized mice. Moreover, we show that the CD4- CD8- B220+ T cells that accumulate in the lymphoid organs of Fas ligand-defective gld mice stably express a form of the B220 molecule which exhibits biochemical similarities to that expressed by activated wild-type T cells, but is distinct from that displayed on the surface of B cells. Surprisingly, we also find a population of CD4+ B220+ pre-apoptotic T cells in FasL-defective gld mice, arguing that these cells can be generated in a Fas-independent fashion. Collectively, our data support a general model whereby upon activation, T cells up-regulate B220 before undergoing apoptosis. When the apoptotic mechanisms are defective, T cells presumably down-regulate their coreceptor molecules but retain expression of B220 as they accumulate in lymphoid organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological properties of wild-type A75/17 and cell culture-adapted Onderstepoort canine distemper virus differ markedly. To learn more about the molecular basis for these differences, we have isolated and sequenced the protein-coding regions of the attachment and fusion proteins of wild-type canine distemper virus strain A75/17. In the attachment protein, a total of 57 amino acid differences were observed between the Onderstepoort strain and strain A75/17, and these were distributed evenly over the entire protein. Interestingly, the attachment protein of strain A75/17 contained an extension of three amino acids at the C terminus. Expression studies showed that the attachment protein of strain A75/17 had a higher apparent molecular mass than the attachment protein of the Onderstepoort strain, in both the presence and absence of tunicamycin. In the fusion protein, 60 amino acid differences were observed between the two strains, of which 44 were clustered in the much smaller F2 portion of the molecule. Significantly, the AUG that has been proposed as a translation initiation codon in the Onderstepoort strain is an AUA codon in strain A75/17. Detailed mutation analyses showed that both the first and second AUGs of strain A75/17 are the major translation initiation sites of the fusion protein. Similar analyses demonstrated that, also in the Onderstepoort strain, the first two AUGs are the translation initiation codons which contribute most to the generation of precursor molecules yielding the mature form of the fusion protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myocardium undergoing remodeling in vivo exhibits insulin resistance that has been attributed to a shift from the insulin-sensitive glucose transporter GLUT4 to the fetal, less insulin-sensitive, isoform GLUT1. To elucidate the role of altered GLUT4 expression in myocardial insulin resistance, glucose uptake and the expression of the glucose transporter isoforms GLUT4 and GLUT1 were measured in adult rat cardiomyocytes (ARC). ARC in culture spontaneously undergo dedifferentiation, hypertrophy-like spreading, and return to a fetal-like gene expression pattern. Insulin stimulation of 2-deoxy-D-glucose uptake was completely abolished on day 2 and 3 of culture and recovered thereafter. Although GLUT4 protein level was reduced, the time-course of unresponsiveness to insulin did not correlate with altered expression of GLUT1 and GLUT4. However, translocation of GLUT4 to the sarcolemma in response to insulin was completely abolished during transient insulin resistance. Insulin-mediated phosphorylation of Akt was not reduced, indicating that activation of phosphatidylinositol 3-kinase (PI3K) was preserved. On the other hand, total and phosphorylated Cbl was reduced during insulin resistance, suggesting that activation of Cbl/CAP is essential for insulin-mediated GLUT4 translocation, in addition to activation of PI3K. Pharmacological inhibition of contraction in insulin-sensitive ARC reduced insulin sensitivity and lowered phosphorylated Cbl. The results suggest that transient insulin resistance in ARC is related to impairment of GLUT4 translocation. A defect in the PI3K-independent insulin signaling pathway involving Cbl seems to contribute to reduced insulin responsiveness and may be related to contractile arrest.