961 resultados para Immiscible fluids


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a simple correlation, which incorporates the mixture velocity, drift velocity, and the correction factor of Farooqi and Richardson, was proposed to predict the void fraction of gas/non-Newtonian intermittent flow in upward inclined pipes. The correlation was based on 352 data points covering a wide range of flow rates for different CMC solutions at diverse angles. A good agreement was obtained between the predicted and experimental results. These results substantiated the general validity of the model presented for gas/non-Newtonian two-phase intermittent flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A set of experimental system to study hydrate dissociation in porous media is built and some experiments on hydrate dissociation by depressurization are carried out. A mathematical model is developed to simulate the hydrate dissociation by depressurization in hydrate-bearing porous media. The model can be used to analyze the effects of the flow of multiphase fluids, the kinetic process and endothermic process of hydrate dissociation, ice-water phase equilibrium, the variation of permeability, convection and conduction on the hydrate dissociation, and gas and water productions. The numerical results agree well with the experimental results, which validate our mathematical model. For a 3-D hydrate reservoir of Class 3, the evolutions of pressure, temperature, and saturations are elucidated and the effects of some main parameters on gas and water rates are analyzed. Numerical results show that gas can be produced effectively from hydrate reservoir in the first stage of depressurization. Then, methods such as thermal stimulation or inhibitor injection should be considered due to the energy deficiency of formation energy. The numerical results for 3-D hydrate reservoir of Class 1 show that the overlying gas hydrate zone can apparently enhance gas rate and prolong life span of gas reservoir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model equation for water waves has been suggested by Whitham to study, qualitatively at least, the different kinds of breaking. This is an integro-differential equation which combines a typical nonlinear convection term with an integral for the dispersive effects and is of independent mathematical interest. For an approximate kernel of the form e^(-b|x|) it is shown first that solitary waves have a maximum height with sharp crests and secondly that waves which are sufficiently asymmetric break into "bores." The second part applies to a wide class of bounded kernels, but the kernel giving the correct dispersion effects of water waves has a square root singularity and the present argument does not go through. Nevertheless the possibility of the two kinds of breaking in such integro-differential equations is demonstrated.

Difficulties arise in finding variational principles for continuum mechanics problems in the Eulerian (field) description. The reason is found to be that continuum equations in the original field variables lack a mathematical "self-adjointness" property which is necessary for Euler equations. This is a feature of the Eulerian description and occurs in non-dissipative problems which have variational principles for their Lagrangian description. To overcome this difficulty a "potential representation" approach is used which consists of transforming to new (Eulerian) variables whose equations are self-adjoint. The transformations to the velocity potential or stream function in fluids or the scaler and vector potentials in electromagnetism often lead to variational principles in this way. As yet no general procedure is available for finding suitable transformations. Existing variational principles for the inviscid fluid equations in the Eulerian description are reviewed and some ideas on the form of the appropriate transformations and Lagrangians for fluid problems are obtained. These ideas are developed in a series of examples which include finding variational principles for Rossby waves and for the internal waves of a stratified fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Part I the kinetic theory of excitations in flowing liquid He II is developed to a higher order than that carried out previously, by Landau and Khalatnikov, in order to demonstrate the existence of non-equilibrium terms of a new nature in the hydrodynamic equations. It is then shown that these terms can lead to spontaneous destabilization in counter currents when the relative velocity of the normal and super fluids exceeds a critical value that depends on the temperature, but not on geometry. There are no adjustable parameters in the theory. The critical velocities are estimated to be in the 14-20 m/sec range for T ≤ 2.0° K, but tend to zero as T → T_λ. The possibility that these critical velocities may be related to the experimentally observed "intrinsic" critical velocities is discussed.

Part II consists of a semi-classical investigation of rotonquantized vortex line interactions. An essentially classical model is used for the collision and the behavior of the roton in the vortex field is investigated in detail. From this model it is possible to derive the HVBK mutual friction terms that appear in the phenomenalogical equations of motion for rotating liquid He II. Estimates of the Hall and Vinen B and B' coefficients are in good agreement with experiments. The claim is made that the theory does not contain any arbitrary adjustable parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degeneration of the outer retina usually causes blindness by affecting the photoreceptor cells. However, the ganglion cells, which consist of optic nerves, on the middle and inner retina layers are often intact. The retinal implant, which can partially restore vision by electrical stimulation, soon becomes a focus for research. Although many groups worldwide have spent a lot of effort on building devices for retinal implant, current state-of-the-art technologies still lack a reliable packaging scheme for devices with desirable high-density multi-channel features. Wireless flexible retinal implants have always been the ultimate goal for retinal prosthesis. In this dissertation, the reliable packaging scheme for a wireless flexible parylene-based retinal implants has been well developed. It can not only provide stable electrical and mechanical connections to the high-density multi-channel (1000+ channels on 5 mm × 5 mm chip area) IC chips, but also survive for more than 10 years in the human body with corrosive fluids.

The device is based on a parylene-metal-parylene sandwich structure. In which, the adhesion between the parylene layers and the metals embedded in the parylene layers have been studied. Integration technology for high-density multi-channel IC chips has also been addressed and tested with dummy and real 268-channel and 1024-channel retinal IC chips. In addition, different protection schemes have been tried in application to IC chips and discrete components to gain the longest lifetime. The effectiveness has been confirmed by the accelerated and active lifetime soaking test in saline solution. Surgical mockups have also been designed and successfully implanted inside dog's and pig's eyes. Additionally, the electrodes used to stimulate the ganglion cells have been modified to lower the interface impedance and shaped to better fit the retina. Finally, all the developed technologies have been applied on the final device with a dual-metal-layer structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long linear polymers that are end-functionalized with associative groups were studied as additives to hydrocarbon fluids to mitigate the fire hazard associated with the presence of mist in a crash scenario. These polymers were molecularly designed to overcome both the shear-degradation of long polymer chains in turbulent flows, and the chain collapse induced by the random placement of associative groups along polymer backbones. Architectures of associative groups on the polymer chain ends that were tested included clusters of self-associative carboxyl groups and pairs of hetero-complementary associative units.

Linear polymers with clusters of discrete numbers of carboxyl groups on their chain ends were investigated first: an innovative synthetic strategy was devised to achieve unprecedented backbone lengths and precise control of the number of carboxyl groups on chain ends (N). We found that a very narrow range of N allows the co-existence of sufficient end-association strength and polymer solubility in apolar media. Subsequent steady-flow rheological study on solution behavior of such soluble polymers in apolar media revealed that the end-association of very long chains in apolar media leads to the formation of flower-like micelles interconnected by bridging chains, which trap significant fraction of polymer chains into looped structures with low contribution to mist-control. The efficacy of very long 1,4-polybutadiene chains end-functionalized with clusters of four carboxyl groups as mist-control additives for jet fuel was further tested. In addition to being shear-resistant, the polymer was found capable of providing fire-protection to jet fuel at concentrations as low as 0.3wt%. We also found that this polymer has excellent solubility in jet fuel over a wide range of temperature (-30 to +70°C) and negligible interference with dewatering of jet fuel. It does not cause an adverse increase in viscosity at concentrations where mist-control efficacy exists.

Four pairs of hetero-complementary associative end-groups of varying strengths were subsequently investigated, in the hopes of achieving supramolecular aggregates with both mist-control ability and better utilization of polymer building blocks. Rheological study of solutions of the corresponding complementary associative polymer pairs in apolar media revealed the strength of complementary end-association required to achieve supramolecular aggregates capable of modulating rheological properties of the solution.

Both self-associating and complementary associating polymers have therefore been found to resist shear degradation. The successful strategy of building soluble, end-associative polymers with either self-associative or complementary associative groups will guide the next generation of mist-control technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary-ion mass spectrometry (SIMS), electron probe analysis (EPMA), analytical scanning electron microscopy (SEM) and infrared (IR) spectroscopy were used to determine the chemical composition and the mineralogy of sub-micrometer inclusions in cubic diamonds and in overgrowths (coats) on octahedral diamonds from Zaire, Botswana, and some unknown localities.

The inclusions are sub-micrometer in size. The typical diameter encountered during transmission electron microscope (TEM) examination was 0.1-0.5 µm. The micro-inclusions are sub-rounded and their shape is crystallographically controlled by the diamond. Normally they are not associated with cracks or dislocations and appear to be well isolated within the diamond matrix. The number density of inclusions is highly variable on any scale and may reach 10^(11) inclusions/cm^3 in the most densely populated zones. The total concentration of metal oxides in the diamonds varies between 20 and 1270 ppm (by weight).

SIMS analysis yields the average composition of about 100 inclusions contained in the sputtered volume. Comparison of analyses of different volumes of an individual diamond show roughly uniform composition (typically ±10% relative). The variation among the average compositions of different diamonds is somewhat greater (typically ±30%). Nevertheless, all diamonds exhibit similar characteristics, being rich in water, carbonate, SiO_2, and K_2O, and depleted in MgO. The composition of micro-inclusions in most diamonds vary within the following ranges: SiO_2, 30-53%; K_2O, 12-30%; CaO, 8-19%; FeO, 6-11%; Al_2O_3, 3-6%; MgO, 2-6%; TiO_2, 2-4%; Na_2O, 1-5%; P_2O_5, 1-4%; and Cl, 1-3%. In addition, BaO, 1-4%; SrO, 0.7-1.5%; La_2O_3, 0.1-0.3%; Ce_2O_3, 0.3-0.5%; smaller amounts of other rare-earth elements (REE), as well as Mn, Th, and U were also detected by instrumental neutron activation analysis (INAA). Mg/(Fe+Mg), 0.40-0.62 is low compared with other mantle derived phases; K/ AI ratios of 2-7 are very high, and the chondrite-normalized Ce/Eu ratios of 10-21 are also high, indicating extremely fractionated REE patterns.

SEM analyses indicate that individual inclusions within a single diamond are roughly of similar composition. The average composition of individual inclusions as measured with the SEM is similar to that measured by SIMS. Compositional variations revealed by the SEM are larger than those detected by SIMS and indicate a small variability in the composition of individual inclusions. No compositions of individual inclusions were determined that might correspond to mono-mineralic inclusions.

IR spectra of inclusion- bearing zones exhibit characteristic absorption due to: (1) pure diamonds, (2) nitrogen and hydrogen in the diamond matrix; and (3) mineral phases in the micro-inclusions. Nitrogen concentrations of 500-1100 ppm, typical of the micro-inclusion-bearing zones, are higher than the average nitrogen content of diamonds. Only type IaA centers were detected by IR. A yellow coloration may indicate small concentration of type IB centers.

The absorption due to the micro-inclusions in all diamonds produces similar spectra and indicates the presence of hydrated sheet silicates (most likely, Fe-rich clay minerals), carbonates (most likely calcite), and apatite. Small quantities of molecular CO_2 are also present in most diamonds. Water is probably associated with the silicates but the possibility of its presence as a fluid phase cannot be excluded. Characteristic lines of olivine, pyroxene and garnet were not detected and these phases cannot be significant components of the inclusions. Preliminary quantification of the IR data suggests that water and carbonate account for, on average, 20-40 wt% of the micro-inclusions.

The composition and mineralogy of the micro-inclusions are completely different from those of the more common, larger inclusions of the peridotitic or eclogitic assemblages. Their bulk composition resembles that of potassic magmas, such as kimberlites and lamproites, but is enriched in H_2O, CO_3, K_2O, and incompatible elements, and depleted in MgO.

It is suggested that the composition of the micro-inclusions represents a volatile-rich fluid or a melt trapped by the diamond during its growth. The high content of K, Na, P, and incompatible elements suggests that the trapped material found in the micro-inclusions may represent an effective metasomatizing agent. It may also be possible that fluids of similar composition are responsible for the extreme enrichment of incompatible elements documented in garnet and pyroxene inclusions in diamonds.

The origin of the fluid trapped in the micro-inclusions is still uncertain. It may have been formed by incipient melting of a highly metasomatized mantle rocks. More likely, it is the result of fractional crystallization of a potassic parental magma at depth. In either case, the micro-inclusions document the presence of highly potassic fluids or melts at depths corresponding to the diamond stability field in the upper mantle. The phases presently identified in the inclusions are believed to be the result of closed system reactions at lower pressures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isotope dilution thorium and uranium analyses of the Harleton chondrite show a larger scatter than previously observed in equilibrated ordinary chondrites (EOC). The linear correlation of Th/U with 1/U in Harleton (and all EOC data) is produced by variation in the chlorapatite to merrillite mixing ratio. Apatite variations control the U concentrations. Phosphorus variations are compensated by inverse variations in U to preserve the Th/U vs. 1/U correlation. Because the Th/U variations reflect phosphate ampling, a weighted Th/U average should converge to an improved solar system Th/U. We obtain Th/U=3.53 (1-mean=0.10), significantly lower and more precise than previous estimates.

To test whether apatite also produces Th/U variation in CI and CM chondrites, we performed P analyses on the solutions from leaching experiments of Orgueil and Murchison meteorites.

A linear Th/U vs. 1/U correlation in CI can be explained by redistribution of hexavalent U by aqueous fluids into carbonates and sulfates.

Unlike CI and EOC, whole rock Th/U variations in CMs are mostly due to Th variations. A Th/U vs. 1/U linear correlation suggested by previous data for CMs is not real. We distinguish 4 components responsible for the whole rock Th/U variations: (1) P and actinide-depleted matrix containing small amounts of U-rich carbonate/sulfate phases (similar to CIs); (2) CAIs and (3) chondrules are major reservoirs for actinides, (4) an easily leachable phase of high Th/U. likely carbonate produced by CAI alteration. Phosphates play a minor role as actinide and P carrier phases in CM chondrites.

Using our Th/U and minimum galactic ages from halo globular clusters, we calculate relative supernovae production rates for 232Th/238U and 235U/238U for different models of r-process nucleosynthesis. For uniform galactic production, the beginning of the r-process nucleosynthesis must be less than 13 Gyr. Exponentially decreasing production is also consistent with a 13 Gyr age, but very slow decay times are required (less than 35 Gyr), approaching the uniform production. The 15 Gyr Galaxy requires either a fast initial production growth (infall time constant less than 0.5 Gyr) followed by very low decrease (decay time constant greater than 100 Gyr), or the fastest possible decrease (≈8 Gyr) preceded by slow in fall (≈7.5 Gyr).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fine-scale seismic structure of the central Mexico, southern Peru, and southwest Japan subduction zones is studied using intraslab earthquakes recorded by temporary and permanent regional seismic arrays. The morphology of the transition from flat to normal subduction is explored in central Mexico and southern Peru, while in southwest Japan the spatial coincidence of a thin ultra-slow velocity layer (USL) atop the flat slab with locations of slow slip events (SSEs) is explored. This USL is also observed in central Mexico and southern Peru, where its lateral extent is used as one constraint on the nature of the flat-to-normal transitions.

In western central Mexico, I find an edge to this USL which is coincident with the western boundary of the projected Orozco Fracture Zone (OFZ) region. Forward modeling of the 2D structure of the subducted Cocos plate using a finite-difference algorithm provides constraints on the velocity and geometry of the slab’s seismic structure in this region and confirms the location of the USL edge. I propose that the Cocos slab is currently fragmenting into a North Cocos plate and a South Cocos plate along the projection of the OFZ, by a process analogous to that which occurred when the Rivera plate separated from the proto-Cocos plate 10 Ma.

In eastern central Mexico, observations of a sharp transition in slab dip near the abrupt end of the Trans Mexican Volcanic Belt (TMVB) suggest a possible slab tear located within the subducted South Cocos plate. The eastern lateral extent of the USL is found to be coincident with these features and with the western boundary of a zone of decreased seismicity, indicating a change in structure which I interpret as evidence of a possible tear. Analysis of intraslab seismicity patterns and focal mechanism orientations and faulting types provides further support for a possible tear in the South Cocos slab. This potential tear, together with the tear along the projection of the OFZ to the northwest, indicates a slab rollback mechanism in which separate slab segments move independently, allowing for mantle flow between the segments.

In southern Peru, observations of a gradual increase in slab dip coupled with a lack of any gaps or vertical offsets in the intraslab seismicity suggest a smooth contortion of the slab. Concentrations of focal mechanisms at orientations which are indicative of slab bending are also observed along the change in slab geometry. The lateral extent of the USL atop the horizontal Nazca slab is found to be coincident with the margin of the projected linear continuation of the subducting Nazca Ridge, implying a causal relationship, but not a slab tear. Waveform modeling of the 2D structure in southern Peru provides constraints on the velocity and geometry of the slab’s seismic structure and confirms the absence of any tears in the slab.

In southwest Japan, I estimate the location of a possible USL along the Philippine Sea slab surface and find this region of low velocity to be coincident with locations of SSEs that have occurred in this region. I interpret the source of the possible USL in this region as fluids dehydrated from the subducting plate, forming a high pore-fluid pressure layer, which would be expected to decrease the coupling on the plate interface and promote SSEs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental studies were conducted with the goals of 1) determining the origin of Pt- group element (PGE) alloys and associated mineral assemblages in refractory inclusions from meteorites and 2) developing a new ultrasensitive method for the in situ chemical and isotopic analysis of PGE. A general review of the geochemistry and cosmochemistry of the PGE is given, and specific research contributions are presented within the context of this broad framework.

An important step toward understanding the cosmochemistry of the PGE is the determination of the origin of POE-rich metallic phases (most commonly εRu-Fe) that are found in Ca, AJ-rich refractory inclusions (CAI) in C3V meteorites. These metals occur along with γNi-Fe metals, Ni-Fe sulfides and Fe oxides in multiphase opaque assemblages. Laboratory experiments were used to show that the mineral assemblages and textures observed in opaque assemblages could be produced by sulfidation and oxidation of once homogeneous Ni-Fe-PGE metals. Phase equilibria, partitioning and diffusion kinetics were studied in the Ni-Fe-Ru system in order to quantify the conditions of opaque assemblage formation. Phase boundaries and tie lines in the Ni-Fe-Ru system were determined at 1273, 1073 and 873K using an experimental technique that allowed the investigation of a large portion of the Ni-Fe-Ru system with a single experiment at each temperature by establishing a concentration gradient within which local equilibrium between coexisting phases was maintained. A wide miscibility gap was found to be present at each temperature, separating a hexagonal close-packed εRu-Fe phase from a face-centered cubic γNi-Fe phase. Phase equilibria determined here for the Ni-Fe-Ru system, and phase equilibria from the literature for the Ni-Fe-S and Ni-Fe-O systems, were compared with analyses of minerals from opaque assemblages to estimate the temperature and chemical conditions of opaque assemblage formation. It was determined that opaque assemblages equilibrated at a temperature of ~770K, a sulfur fugacity 10 times higher than an equilibrium solar gas, and an oxygen fugacity 106 times higher than an equilibrium solar gas.

Diffusion rates between -γNi-Fe and εRu-Fe metal play a critical role in determining the time (with respect to CAI petrogenesis) and duration of the opaque assemblage equilibration process. The diffusion coefficient for Ru in Ni (DRuNi) was determined as an analog for the Ni-Fe-Ru system by the thin-film diffusion method in the temperature range of 1073 to 1673K and is given by the expression:

DRuNi (cm2 sec-1) = 5.0(±0.7) x 10-3 exp(-2.3(±0.1) x 1012 erg mole-1/RT) where R is the gas constant and T is the temperature in K. Based on the rates of dissolution and exsolution of metallic phases in the Ni-Fe-Ru system it is suggested that opaque assemblages equilibrated after the melting and crystallization of host CAI during a metamorphic event of ≥ 103 years duration. It is inferred that opaque assemblages originated as immiscible metallic liquid droplets in the CAI silicate liquid. The bulk compositions of PGE in these precursor alloys reflects an early stage of condensation from the solar nebula and the partitioning of V between the precursor alloys and CAI silicate liquid reflects the reducing nebular conditions under which CAI were melted. The individual mineral phases now observed in opaque assemblages do not preserve an independent history prior to CAI melting and crystallization, but instead provide important information on the post-accretionary history of C3V meteorites and allow the quantification of the temperature, sulfur fugacity and oxygen fugacity of cooling planetary environments. This contrasts with previous models that called upon the formation of opaque assemblages by aggregation of phases that formed independently under highly variable conditions in the solar nebula prior to the crystallization of CAI.

Analytical studies were carried out on PGE-rich phases from meteorites and the products of synthetic experiments using traditional electron microprobe x-ray analytical techniques. The concentrations of PGE in common minerals from meteorites and terrestrial rocks are far below the ~100 ppm detection limit of the electron microprobe. This has limited the scope of analytical studies to the very few cases where PGE are unusually enriched. To study the distribution of PGE in common minerals will require an in situ analytical technique with much lower detection limits than any methods currently in use. To overcome this limitation, resonance ionization of sputtered atoms was investigated for use as an ultrasensitive in situ analytical technique for the analysis of PGE. The mass spectrometric analysis of Os and Re was investigated using a pulsed primary Ar+ ion beam to provide sputtered atoms for resonance ionization mass spectrometry. An ionization scheme for Os that utilizes three resonant energy levels (including an autoionizing energy level) was investigated and found to have superior sensitivity and selectivity compared to nonresonant and one and two energy level resonant ionization schemes. An elemental selectivity for Os over Re of ≥ 103 was demonstrated. It was found that detuning the ionizing laser from the autoionizing energy level to an arbitrary region in the ionization continuum resulted in a five-fold decrease in signal intensity and a ten-fold decrease in elemental selectivity. Osmium concentrations in synthetic metals and iron meteorites were measured to demonstrate the analytical capabilities of the technique. A linear correlation between Os+ signal intensity and the known Os concentration was observed over a range of nearly 104 in Os concentration with an accuracy of ~ ±10%, a millimum detection limit of 7 parts per billion atomic, and a useful yield of 1%. Resonance ionization of sputtered atoms samples the dominant neutral-fraction of sputtered atoms and utilizes multiphoton resonance ionization to achieve high sensitivity and to eliminate atomic and molecular interferences. Matrix effects should be small compared to secondary ion mass spectrometry because ionization occurs in the gas phase and is largely independent of the physical properties of the matrix material. Resonance ionization of sputtered atoms can be applied to in situ chemical analysis of most high ionization potential elements (including all of the PGE) in a wide range of natural and synthetic materials. The high useful yield and elemental selectivity of this method should eventually allow the in situ measurement of Os isotope ratios in some natural samples and in sample extracts enriched in PGE by fire assay fusion.

Phase equilibria and diffusion experiments have provided the basis for a reinterpretation of the origin of opaque assemblages in CAI and have yielded quantitative information on conditions in the primitive solar nebula and cooling planetary environments. Development of the method of resonance ionization of sputtered atoms for the analysis of Os has shown that this technique has wide applications in geochemistry and will for the first time allow in situ studies of the distribution of PGE at the low concentration levels at which they occur in common minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite years of research on low-angle detachments, much about them remains enigmatic. This thesis addresses some of the uncertainty regarding two particular detachments, the Mormon Peak detachment in Nevada and the Heart Mountain detachment in Wyoming and Montana.

Constraints on the geometry and kinematics of emplacement of the Mormon Peak detachment are provided by detailed geologic mapping of the Meadow Valley Mountains, along with an analysis of structural data within the allochthon in the Mormon Mountains. Identifiable structures well suited to constrain the kinematics of the detachment include a newly mapped, Sevier-age monoclinal flexure in the hanging wall of the detachment. This flexure, including the syncline at its base and the anticline at its top, can be readily matched to the base and top of the frontal Sevier thrust ramp, which is exposed in the footwall of the detachment to the east in the Mormon Mountains and Tule Springs Hills. The ~12 km of offset of these structural markers precludes the radial sliding hypothesis for emplacement of the allochthon.

The role of fluids in the slip along faults is a widely investigated topic, but the use of carbonate clumped-isotope thermometry to investigate these fluids is new. Faults rocks from within ~1 m of the Mormon Peak detachment, including veins, breccias, gouges, and host rocks, were analyzed for carbon, oxygen, and clumped-isotope measurements. The data indicate that much of the carbonate breccia and gouge material along the detachment is comminuted host rock, as expected. Measurements in vein material indicate that the fluid system is dominated by meteoric water, whose temperature indicates circulation to substantial depths (c. 4 km) in the upper crust near the fault zone.

Slip along the subhorizontal Heart Mountain detachment is particularly enigmatic, and many different mechanisms for failure have been proposed, predominantly involving catastrophic failure. Textural evidence of multiple slip events is abundant, and include multiple brecciation events and cross-cutting clastic dikes. Footwall deformation is observed in numerous exposures of the detachment. Stylolitic surfaces and alteration textures within and around “banded grains” previously interpreted to be an indicator of high-temperature fluidization along the fault suggest their formation instead via low-temperature dissolution and alteration processes. There is abundant textural evidence of the significant role of fluids along the detachment via pressure solution. The process of pressure solution creep may be responsible for enabling multiple slip events on the low-angle detachment, via a local rotation of the stress field.

Clumped-isotope thermometry of fault rocks associated with the Heart Mountain detachment indicates that despite its location on the flanks of a volcano that was active during slip, the majority of carbonate along the Heart Mountain detachment does not record significant heating above ambient temperatures (c. 40-70°C). Instead, cold meteoric fluids infiltrated the detachment breccia, and carbonate precipitated under ambient temperatures controlled by structural depth. Locally, fault gouge does preserve hot temperatures (>200°C), as is observed in both the Mormon Peak detachment and Heart Mountain detachment areas. Samples with very hot temperatures attributable to frictional shear heating are present but rare. They appear to be best preserved in hanging wall structures related to the detachment, rather than along the main detachment.

Evidence is presented for the prevalence of relatively cold, meteoric fluids along both shallow crustal detachments studied, and for protracted histories of slip along both detachments. Frictional heating is evident from both areas, but is a minor component of the preserved fault rock record. Pressure solution is evident, and might play a role in initiating slip on the Heart Mountain fault, and possibly other low-angle detachments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O conhecimento de propriedades de transporte de misturas a diferentes pressões e temperaturas é importante em projetos, operação, controle e otimização de processos industriais. Nestes processos, frequentemente, o fluido é uma mistura binária ou multicomponente de hidrocarbonetos, como fluidos de petróleo. Propriedades experimentais de misturas, especialmente, a viscosidade absoluta como função de temperatura e pressão, podem fornecer importantes informações sobre o comportamento do fluido em diferentes composições e são usadas no desenvolvimento de modelos e correlações e na caracterização de misturas complexas. Diversas regras de mistura têm sido propostas na literatura para cálculo de viscosidade de misturas. Estas regras de mistura preveem o comportamento da mistura à pressão atmosférica usando propriedades dos componentes puros. Porém, em diversas aplicações é necessário estimar a viscosidade de misturas a altas pressões. Neste estudo, foram avaliadas regras de mistura comumente usadas como Refutas, Fator de Mistura, Índice de Mistura, Grunberg e Nissan, Kendall-Monroe e Eyring bem como Aditividade Molar, usando dados de viscosidade experimental de misturas em altas pressões. Inicialmente, foram realizadas medidas de viscosidade absoluta para a mistura altamente assimétrica de ciclohexano e n-hexadecano na faixa de temperatura entre (318,15 a 413,15) K e pressões até 62,053 MPa e, para este sistema, um modelo foi proposto para cálculo dos componentes puros para dada temperatura e pressão. Além disso, dados experimentais de viscosidade de trinta misturas cujos componentes diferem em forma, tamanho ou flexibilidade foram selecionados na literatura e modelados empregando-se regras de mistura. As viscosidades das misturas foram estimadas a partir de dados de viscosidade experimental dos componentes puros medidos nas mesmas temperaturas e pressões. A altas pressões, Refutas, Fator de Mistura e Índice de Mistura apresentaram os melhores resultados para todos os sistemas estudados. Mesmo para moléculas bastante assimétricas, Refutas, Fator de Mistura e Índice de Mistura podem ser usados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents experimental measurements of the rheological behavior of liquid-solid mixtures at moderate Reynolds (defined by the shear rate and particle diameter) and Stokes numbers, ranging from 3 ≤ Re ≤ 1.6 × 103 and 0.4 ≤ St ≤ 195. The experiments use a specifically designed Couette cylindrical rheometer that allows for probing the transition from transporting a pure liquid to transporting a dense suspension of particles. Measurements of the shear stress are presented for a wide range of particle concentration (10 to 60% in volume) and for particle to fluid density ratio between 1 and 1.05. The effective relative viscosity exhibits a strong dependence on the solid fraction for all density ratios tested. For density ratio of 1 the effective viscosity increases with Stokes number (St) for volume fractions (φ) lower than 40% and becomes constant for higher φ. When the particles are denser than the liquid, the effective viscosity shows a stronger dependance on St. An analysis of the particle resuspension for the case with a density ratio of 1.05 is presented and used to predict the local volume fraction where the shear stress measurements take place. When the local volume fraction is considered, the effective viscosity for settling and no settling particles is consistent, indicating that the effective viscosity is independent of differences in density between the solid and liquid phase. Shear stress measurements of pure fluids (no particles) were performed using the same rheometer, and a deviation from laminar behavior is observed for gap Reynolds numbers above 4× 103, indicating the presence of hydrodynamic instabilities associated with the rotation of the outer cylinder. The increase on the effective viscosity with Stokes numbers observed for mixtures with φ ≤ 30% appears to be affected by such hydrodynamic instabilities. The effective viscosity for the current experiments is considerably higher than the one reported in non-inertial suspensions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been well-established that interfaces in crystalline materials are key players in the mechanics of a variety of mesoscopic processes such as solidification, recrystallization, grain boundary migration, and severe plastic deformation. In particular, interfaces with complex morphologies have been observed to play a crucial role in many micromechanical phenomena such as grain boundary migration, stability, and twinning. Interfaces are a unique type of material defect in that they demonstrate a breadth of behavior and characteristics eluding simplified descriptions. Indeed, modeling the complex and diverse behavior of interfaces is still an active area of research, and to the author's knowledge there are as yet no predictive models for the energy and morphology of interfaces with arbitrary character. The aim of this thesis is to develop a novel model for interface energy and morphology that i) provides accurate results (especially regarding "energy cusp" locations) for interfaces with arbitrary character, ii) depends on a small set of material parameters, and iii) is fast enough to incorporate into large scale simulations.

In the first half of the work, a model for planar, immiscible grain boundary is formulated. By building on the assumption that anisotropic grain boundary energetics are dominated by geometry and crystallography, a construction on lattice density functions (referred to as "covariance") is introduced that provides a geometric measure of the order of an interface. Covariance forms the basis for a fully general model of the energy of a planar interface, and it is demonstrated by comparison with a wide selection of molecular dynamics energy data for FCC and BCC tilt and twist boundaries that the model accurately reproduces the energy landscape using only three material parameters. It is observed that the planar constraint on the model is, in some cases, over-restrictive; this motivates an extension of the model.

In the second half of the work, the theory of faceting in interfaces is developed and applied to the planar interface model for grain boundaries. Building on previous work in mathematics and materials science, an algorithm is formulated that returns the minimal possible energy attainable by relaxation and the corresponding relaxed morphology for a given planar energy model. It is shown that the relaxation significantly improves the energy results of the planar covariance model for FCC and BCC tilt and twist boundaries. The ability of the model to accurately predict faceting patterns is demonstrated by comparison to molecular dynamics energy data and experimental morphological observation for asymmetric tilt grain boundaries. It is also demonstrated that by varying the temperature in the planar covariance model, it is possible to reproduce a priori the experimentally observed effects of temperature on facet formation.

Finally, the range and scope of the covariance and relaxation models, having been demonstrated by means of extensive MD and experimental comparison, future applications and implementations of the model are explored.