982 resultados para INTEGRAL SOLUTIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been proposed that the field of appropriate technology (AT) - small-scale, energy efficient and low-cost solutions, can be of tremendous assistance in many of the sustainable development challenges, such as food and water security, health, shelter, education and work opportunities. Unfortunately, there has not yet been a significant uptake of AT by organizations, researchers, policy makers or the mainstream public working in the many areas of the development sector. Some of the biggest barriers to higher AT engagement include: 1) AT perceived as inferior or ‘poor persons technology’, 2) questions of technological robustness, design, fit and transferability, 3) funding, 4) institutional support, as well as 5) general barriers associated with tackling rural poverty. With the rise of information and communication technologies (ICTs) for online networking and knowledge sharing, the possibilities to tap into the collaborative open-access and open-source AT are growing, and so is the prospect for collective poverty reducing strategies, enhancement of entrepreneurship, communications, education and a diffusion of life-changing technologies. In short, the same collaborative philosophy employed in the success of open source software can be applied to hardware design of technologies to improve sustainable development efforts worldwide. To analyze current barriers to open source appropriate technology (OSAT) and explore opportunities to overcome such obstacles, a series of interviews with researchers and organizations working in the field of AT were conducted. The results of the interviews confirmed the majority of literature identified barriers, but also revealed that the most pressing problem for organizations and researchers currently working in the field of AT is the need for much better communication and collaboration to share the knowledge and resources and work in partnership. In addition, interviews showcased general receptiveness to the principles of collaborative innovation and open source on the ground level. A much greater focus on networking, collaboration, demand-led innovation, community participation, and the inclusion of educational institutions through student involvement can be of significant help to build the necessary knowledge base, networks and the critical mass exposure for the growth of appropriate technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building on Habermas’s conceptualisation of modes of reasoning, the authors proposed that an application of critical theory to the present bureaucratised nature of communication between state representatives and welfare recipients (Howe 1992) might open up ways in which social workers could reconceptualise their practice. In a subsequent edition of this journal, three of the present authors introduced the radical theatre of Augusto Boal as a methodology which might provide an expressive route for social workers seeking to build a practice combining the intellectual analysis of critical theory with new ways of working (Spratt et al. 2000). Boal’s method recognises the oppressed status of groups who come to the attention of agents of the state and, through the use of a range of theatrical techniques, introduces strategies to facilitate the conscious recognition of such collective oppressions and develop dialogical ways to address them. In the last paper, the authors presented one such technique, ‘image theatre’, and demonstrated its use with social workers in consciousness raising and developing strategies for collective action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The greatest relaxation time for an assembly of three- dimensional rigid rotators in an axially symmetric bistable potential is obtained exactly in terms of continued fractions as a sum of the zero frequency decay functions (averages of the Legendre polynomials) of the system. This is accomplished by studying the entire time evolution of the Green function (transition probability) by expanding the time dependent distribution as a Fourier series and proceeding to the zero frequency limit of the Laplace transform of that distribution. The procedure is entirely analogous to the calculation of the characteristic time of the probability evolution (the integral of the configuration space probability density function with respect to the position co-ordinate) for a particle undergoing translational diffusion in a potential; a concept originally used by Malakhov and Pankratov (Physica A 229 (1996) 109). This procedure allowed them to obtain exact solutions of the Kramers one-dimensional translational escape rate problem for piecewise parabolic potentials. The solution was accomplished by posing the problem in terms of the appropriate Sturm-Liouville equation which could be solved in terms of the parabolic cylinder functions. The method (as applied to rotational problems and posed in terms of recurrence relations for the decay functions, i.e., the Brinkman approach c.f. Blomberg, Physica A 86 (1977) 49, as opposed to the Sturm-Liouville one) demonstrates clearly that the greatest relaxation time unlike the integral relaxation time which is governed by a single decay function (albeit coupled to all the others in non-linear fashion via the underlying recurrence relation) is governed by a sum of decay functions. The method is easily generalized to multidimensional state spaces by matrix continued fraction methods allowing one to treat non-axially symmetric potentials, where the distribution function is governed by two state variables. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glass transition in a quantum Lennard-Jones mixture is investigated by constant-volume path-integral simulations. Particles are assumed to be distinguishable, and the strength of quantum effects is varied by changing h from zero (the classical case) to one (corresponding to a highly quantum-mechanical regime). Quantum delocalization and zero point energy drastically reduce the sensitivity of structural and thermodynamic properties to the glass transition. Nevertheless, the glass transition temperature T-g can be determined by analyzing the phase space mobility of path-integral centroids. At constant volume, the T-g of the simulated model increases monotonically with increasing h. Low temperature tunneling centers are identified, and the quantum versus thermal character of each center is analyzed. The relation between these centers and soft quasilocalized harmonic vibrations is investigated. Periodic minimizations of the potential energy with respect to the positions of the particles are performed to determine the inherent structure of classical and quantum glassy samples. The geometries corresponding to these energy minima are found to be qualitatively similar in all cases. Systematic comparisons for ordered and disordered structures, harmonic and anharmonic dynamics, classical and quantum systems show that disorder, anharmonicity, and quantum effects are closely interlinked.