993 resultados para Hybrid layers
Resumo:
From a hybrid systems point of view, we provide a modeling framework and a trajectory tracking control design methodology for juggling systems. We present the main ideas and concepts in a one degree-of-freedom juggler, which consists of a ball bouncing on an actuated robot. We design a hybrid control strategy that, with only information of the ball's state at impacts, controls the ball to track a reference rhythmic pattern with arbitrary precision. We extend this hybrid control strategy to the case of juggling multiple balls with different rhythmic patterns. Simulation results for juggling of one and three balls with a single actuated robot are presented. © 2007 IEEE.
Resumo:
We demonstrate a method to realize vertically oriented Ge nanowires on Si(111) substrates. Ge nanowires were grown by chemical vapor deposition using Au nanoparticles to seed nanowire growth via a vapor-liquid-solid growth mechanism. Rapid oxidation of Si during Au nanoparticle application inhibits the growth of vertically oriented Ge nanowires directly on Si. The present method employs thin Ge buffer layers grown at low temperature less than 600 degrees C to circumvent the oxidation problem. By using a thin Ge buffer layer with root-mean-square roughness of approximately 2 nm, the yield of vertically oriented Ge nanowires is as high as 96.3%. This yield is comparable to that of homoepitaxial Ge nanowires. Furthermore, branched Ge nanowires could be successfully grown on these vertically oriented Ge nanowires by a secondary seeding technique. Since the buffer layers are grown under moderate conditions without any high temperature processing steps, this method has a wide process window highly suitable for Si-based microelectronics.
Resumo:
We report the first hybrid mode-locking of a monolithic two-section multiple quantum well InGaN based laser diode. This device, with a length of 1.5 mm, has a 50-μm-long absorber section located at the back facet and generates a continuous stable 28.6 GHz pulse train with an average output power of 9.4 mW at an emission wavelength of 422 nm. Under hybrid mode-locking, the pulse width reduces to 4 ps, the peak power increases to 72 mW, and the microwave linewidth reduces by 13 dB to <500 kHz. We also observe the passive mode-locking with pulse width and peak power of 8 ps and 37 mW, respectively. © 1989-2012 IEEE.
Resumo:
In this we have looked at the concept of introducing carbon nanotubes on the surfaces of the microstrip patch antennas. We examined the performance improvements in a patch antenna through finite difference time domain simulations to increase the efficiency of the antenna. The results suggest that carbon nanotubes lead to a higher gain due to their electrical properties. A high gain antenna with low power requirements resulted in achieving a higher overall bandwidth. The designed antenna's gain, bandwidth and directivity are analyzed before and after introducing carbon nanotubes. © 2013 IEEE.
Resumo:
When used correctly, Statistical Energy Analysis (SEA) can provide good predictions of high frequency vibration levels in built-up structures. Unfortunately, the assumptions that underlie SEA break down as the frequency of excitation is reduced, and the method does not yield accurate predictions at "medium" frequencies (and neither does the Finite Element Method, which is limited to low frequencies). A basic problem is that parts of the system have a short wavelength of deformation and meet the requirements of SEA, while other parts of the system do not - this is often referred to as the "mid-frequency" problem, and there is a broad class of mid-frequency vibration problems that are of great concern to industry. In this paper, a coupled deterministic-statistical approach referred to as the Hybrid Method (Shorter & Langley, 2004) is briefly described, and some results that demonstrate how the method overcomes the aforementioned difficulties are presented.
Resumo:
Against a background of increasing energy demand and rising fuel prices, hybrid-electric propulsion systems (HEPS) have the potential to significantly reduce fuel consumption in the aviation industry, particularly in the lighter sectors. By taking advantage of both Electric Motor (EM) and Internal Combustion Engine (ICE), HEPS provide not only a benefit in fuel saving but also a reduction in take-off noise and the emission levels. This research considers the design and sizing process of a hybrid-electric propulsion system for a single-seat demonstrator aircraft, the experimental derivation of the ICE map and the EM parameters. In addition to the experimental data, a novel modeling approach including several linked desktop PC software packages is presented to analyze and optimize hybrid-electric technology for aircraft. Further to the analysis of a parallel hybrid-electric, mid-scale aircraft, this paper also presents a scaling approach for a 20 kg UAV and a 50 tonne inter-city airliner. At the smaller scale, two different mission profiles are analyzed: an ISR mission profile, where the simulation routine optimizes the component size of the hybrid-electric propulsion system with respect to fuel saving, and a maximum duration profile; where the flight endurance is determined as a function of payload weight. At the larger scale, the performance of a 50 tonne inter-city airliner is modeled, based on a hybrid-electric gas-turbine, assuming a range of electric boost powers and battery masses.
Resumo:
A critical element for the successful growth of GaN device layers on Si is accurate control of the AlGaN buffer layers used to manage strain. Here we present a method for measuring the composition of the AlGaN buffer layers in device structures which makes use of a one-dimensional x-ray detector to provide efficient measurement of a reciprocal space map which covers the full compositional range from AlN to GaN. Combining this with a suitable x-ray reflection with low strain sensitivity it is possible to accurately determine the Al fraction of the buffer layers independent of their relaxation state. © 2013 IOP Publishing Ltd.