987 resultados para Hutchinson, Steven
Resumo:
Automated assembly of mechanical devices is studies by researching methods of operating assembly equipment in a variable manner; that is, systems which may be configured to perform many different assembly operations are studied. The general parts assembly operation involves the removal of alignment errors within some tolerance and without damaging the parts. Two methods for eliminating alignment errors are discussed: a priori suppression and measurement and removal. Both methods are studied with the more novel measurement and removal technique being studied in greater detail. During the study of this technique, a fast and accurate six degree-of-freedom position sensor based on a light-stripe vision technique was developed. Specifications for the sensor were derived from an assembly-system error analysis. Studies on extracting accurate information from the sensor by optimally reducing redundant information, filtering quantization noise, and careful calibration procedures were performed. Prototype assembly systems for both error elimination techniques were implemented and used to assemble several products. The assembly system based on the a priori suppression technique uses a number of mechanical assembly tools and software systems which extend the capabilities of industrial robots. The need for the tools was determined through an assembly task analysis of several consumer and automotive products. The assembly system based on the measurement and removal technique used the six degree-of-freedom position sensor to measure part misalignments. Robot commands for aligning the parts were automatically calculated based on the sensor data and executed.
Resumo:
Discussion Conclusions Materials and Methods Acknowledgments Author Contributions References Reader Comments (0) Figures Abstract The importance of mangrove forests in carbon sequestration and coastal protection has been widely acknowledged. Large-scale damage of these forests, caused by hurricanes or clear felling, can enhance vulnerability to erosion, subsidence and rapid carbon losses. However, it is unclear how small-scale logging might impact on mangrove functions and services. We experimentally investigated the impact of small-scale tree removal on surface elevation and carbon dynamics in a mangrove forest at Gazi bay, Kenya. The trees in five plots of a Rhizophora mucronata (Lam.) forest were first girdled and then cut. Another set of five plots at the same site served as controls. Treatment induced significant, rapid subsidence (−32.1±8.4 mm yr−1 compared with surface elevation changes of +4.2±1.4 mm yr−1 in controls). Subsidence in treated plots was likely due to collapse and decomposition of dying roots and sediment compaction as evidenced from increased sediment bulk density. Sediment effluxes of CO2 and CH4 increased significantly, especially their heterotrophic component, suggesting enhanced organic matter decomposition. Estimates of total excess fluxes from treated compared with control plots were 25.3±7.4 tCO2 ha−1 yr−1 (using surface carbon efflux) and 35.6±76.9 tCO2 ha−1 yr−1 (using surface elevation losses and sediment properties). Whilst such losses might not be permanent (provided cut areas recover), observed rapid subsidence and enhanced decomposition of soil sediment organic matter caused by small-scale harvesting offers important lessons for mangrove management. In particular mangrove managers need to carefully consider the trade-offs between extracting mangrove wood and losing other mangrove services, particularly shoreline stabilization, coastal protection and carbon storage.
Resumo:
The Activity in GEriatric acute CARe (AGECAR) is a randomised control trial to assess the effectiveness of an intrahospital strength and walk program during short hospital stays for improving functional capacity of patients aged 75 years or older. Patien
Resumo:
The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis driven discovery in humans. Hypotheses underlying molecular mechanisms of disease, and gene/tissue function can be tested in rodents in order to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. Firstly we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis". Secondly we review specific transgenic and knock-out mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.
Resumo:
Grattan, J., Huxley, S., Karaki, L. A., Toland, H., Gilbertson, D., Pyatt, B., Saad, Z. A. (2002). 'Death . . . more desirable than life'? The human skeletal record and toxicological implications of ancient copper mining and smelting in Wadi Faynan, southwestern Jordan. Toxicology and Industrial Health, 18 (6), 297-307.
Resumo:
Charman, D. West, S. Kelly, A. Grattan, J. environmental change and Tephra Deposition: the strath of Kildonan, Northern Scotland. Journal of Archaeological Science. 1995. 22 pp 799-809
Resumo:
STUDY QUESTION. Are significant abnormalities in outward (K+) conductance and resting membrane potential (Vm) present in the spermatozoa of patients undertaking IVF and ICSI and if so, what is their functional effect on fertilization success? SUMMARY ANSWER. Negligible outward conductance (≈5% of patients) or an enhanced inward conductance (≈4% of patients), both of which caused depolarization of Vm, were associated with a low rate of fertilization following IVF. WHAT IS KNOWN ALREADY. Sperm-specific potassium channel knockout mice are infertile with defects in sperm function, suggesting that these channels are essential for fertility. These observations suggest that malfunction of K+ channels in human spermatozoa might contribute significantly to the occurrence of subfertility in men. However, remarkably little is known of the nature of K+ channels in human spermatozoa or the incidence and functional consequences of K+ channel defects. STUDY DESIGN, SIZE AND DURATION. Spermatozoa were obtained from healthy volunteer research donors and subfertile IVF and ICSI patients attending a hospital assisted reproductive techniques clinic between May 2013 and December 2015. In total, 40 IVF patients, 41 ICSI patients and 26 normozoospermic donors took part in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS. Samples were examined using electrophysiology (whole-cell patch clamping). Where abnormal electrophysiological characteristics were identified, spermatozoa were further examined for Ca2+ influx induced by progesterone and penetration into viscous media if sufficient sample was available. Full exome sequencing was performed to specifically evaluate potassium calcium-activated channel subfamily M α 1 (KCNMA1), potassium calcium-activated channel subfamily U member 1 (KCNU1) and leucine-rich repeat containing 52 (LRRC52) genes and others associated with K+ signalling. In IVF patients, comparison with fertilization rates was done to assess the functional significance of the electrophysiological abnormalities. MAIN RESULTS AND THE ROLE OF CHANCE. Patch clamp electrophysiology was used to assess outward (K+) conductance and resting membrane potential (Vm) and signalling/motility assays were used to assess functional characteristics of sperm from IVF and ICSI patient samples. The mean Vm and outward membrane conductance in sperm from IVF and ICSI patients were not significantly different from those of control (donor) sperm prepared under the same conditions, but variation between individuals was significantly greater (P< 0.02) with a large number of outliers (>25%). In particular, in ≈10% of patients (7/81), we observed either a negligible outward conductance (4 patients) or an enhanced inward current (3 patients), both of which caused depolarization of Vm. Analysis of clinical data from the IVF patients showed significant association of depolarized Vm (≥0 mV) with low fertilization rate (P= 0.012). Spermatozoa with electrophysiological abnormities (conductance and Vm) responded normally to progesterone with elevation of [Ca2+]i and penetration of viscous medium, indicating retention of cation channel of sperm (CatSper) channel function. LIMITATIONS, REASONS FOR CAUTION. For practical, technical, ethical and logistical reasons, we could not obtain sufficient additional semen samples from men with conductance abnormalities to establish the cause of the conductance defects. Full exome sequencing was only available in two men with conductance defects. WIDER IMPLICATIONS OF THE FINDINGS. These data add significantly to the understanding of the role of ion channels in human sperm function and its impact on male fertility. Impaired potassium channel conductance (Gm) and/or Vm regulation is both common and complex in human spermatozoa and importantly is associated with impaired fertilization capacity when the Vm of cells is completely depolarized.
Resumo:
We investigate the problem of learning disjunctions of counting functions, which are general cases of parity and modulo functions, with equivalence and membership queries. We prove that, for any prime number p, the class of disjunctions of integer-weighted counting functions with modulus p over the domain Znq (or Zn) for any given integer q ≥ 2 is polynomial time learnable using at most n + 1 equivalence queries, where the hypotheses issued by the learner are disjunctions of at most n counting functions with weights from Zp. The result is obtained through learning linear systems over an arbitrary field. In general a counting function may have a composite modulus. We prove that, for any given integer q ≥ 2, over the domain Zn2, the class of read-once disjunctions of Boolean-weighted counting functions with modulus q is polynomial time learnable with only one equivalence query, and the class of disjunctions of log log n Boolean-weighted counting functions with modulus q is polynomial time learnable. Finally, we present an algorithm for learning graph-based counting functions.
Resumo:
We investigate the efficient learnability of unions of k rectangles in the discrete plane (1,...,n)[2] with equivalence and membership queries. We exhibit a learning algorithm that learns any union of k rectangles with O(k^3log n) queries, while the time complexity of this algorithm is bounded by O(k^5log n). We design our learning algorithm by finding "corners" and "edges" for rectangles contained in the target concept and then constructing the target concept from those "corners" and "edges". Our result provides a first approach to on-line learning of nontrivial subclasses of unions of intersections of halfspaces with equivalence and membership queries.
Resumo:
The performance of a randomized version of the subgraph-exclusion algorithm (called Ramsey) for CLIQUE by Boppana and Halldorsson is studied on very large graphs. We compare the performance of this algorithm with the performance of two common heuristic algorithms, the greedy heuristic and a version of simulated annealing. These algorithms are tested on graphs with up to 10,000 vertices on a workstation and graphs as large as 70,000 vertices on a Connection Machine. Our implementations establish the ability to run clique approximation algorithms on very large graphs. We test our implementations on a variety of different graphs. Our conclusions indicate that on randomly generated graphs minor changes to the distribution can cause dramatic changes in the performance of the heuristic algorithms. The Ramsey algorithm, while not as good as the others for the most common distributions, seems more robust and provides a more even overall performance. In general, and especially on deterministically generated graphs, a combination of simulated annealing with either the Ramsey algorithm or the greedy heuristic seems to perform best. This combined algorithm works particularly well on large Keller and Hamming graphs and has a competitive overall performance on the DIMACS benchmark graphs.
Resumo:
Small depth quantum circuits have proved to be unexpectedly powerful in comparison to their classical counterparts. We survey some of the recent work on this and present some open problems.
Resumo:
We study properties of non-uniform reductions and related completeness notions. We strengthen several results of Hitchcock and Pavan and give a trade-off between the amount of advice needed for a reduction and its honesty on NEXP. We construct an oracle relative to which this trade-off is optimal. We show, in a more systematic study of non-uniform reductions, that among other things non-uniformity can be removed at the cost of more queries. In line with Post's program for complexity theory we connect such 'uniformization' properties to the separation of complexity classes.