959 resultados para Homeostase redox


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen-free radicals, more generally known as reactive oxygen species (ROS) along with reactive nitrogen species (RNS) are well recognised for playing a dual role as both deleterious and beneficial species. The "two-faced" character of ROS is substantiated by growing body of evidence that ROS within cells act as secondary messengers in intracellular signalling cascades, which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. The cumulative production of ROS/RNS through either endogenous or exogenous insults is termed oxidative stress and is common for many types of cancer cell that are linked with altered redox regulation of cellular signalling pathways. Oxidative stress induces a cellular redox imbalance which has been found to be present in various cancer cells compared with normal cells; the redox imbalance thus may be related to oncogenic stimulation. DNA mutation is a critical step in carcinogenesis and elevated levels of oxidative DNA lesions (8-OH-G) have been noted in various tumours, strongly implicating such damage in the etiology of cancer. It appears that the DNA damage is predominantly linked with the initiation process. This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process. Attention is focused on structural, chemical and biochemical aspects of free radicals, the endogenous and exogenous sources of their generation, the metal (iron, copper, chromium, cobalt, vanadium, cadmium, arsenic, nickel)-mediated formation of free radicals (e.g. Fenton chemistry), the DNA damage (both mitochondrial and nuclear), the damage to lipids and proteins by free radicals, the phenomenon of oxidative stress, cancer and the redox environment of a cell, the mechanisms of carcinogenesis and the role of signalling cascades by ROS; in particular. ROS activation of AP-1 (activator protein) and NF-kappa B (nuclear factor kappa B) signal transduction pathways, which, in turn lead to the transcription of genes involved in cell growth regulatory pathways. The role of enzymatic (superoxide dismutase (Cu. Zn-SOD. Mn-SOD), catalase, glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E, carotenoids, thiol antioxidants (glutathione, thioredoxin and lipoic acid), flavonoids, selenium and others) in the process of careinogenesis as well as the antioxidant interactions with various regulatory factors, including Ref-1, NF-kappa B, AP-1 are also reviewed. 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of isoelectronic replacement of a neutral nitrogen donor atom by an anionic carbon atom in terpyridine ruthenium(II) complexes on the electronic and photophysical properties of the resulting N,C,N'- and C,N,N'-cyclometalated aryl ruthenium(II) complexes were investigated. To this end, a series of complexes was prepared either with ligands containing exclusively nitrogen donor atoms, that is, [Ru(R-1-tpy)(R-2-tpy)](2+) (R-1, R-2 = H, CO2Et), or bearing either one N,C,N'- or C,N,N'-cyclometalated ligand and one tpy ligand, that is, [Ru(R-1-(NCN)-C-Lambda-N-Lambda)(R-2-tpy)](+) and [Ru(R-1-(CNN)-N-Lambda-N-Lambda)(R-2-tpy)](+), respectively. Single-crystal X-ray structure determinations showed that cyclometalation does not significantly alter the overall geometry of the complexes but does change the bond lengths around the ruthenium(II) center, especially the nitrogen-to-ruthenium bond length trans to the carbanion. Substitution of either of the ligands with electron-withdrawing ester functionalities fine-tuned the electronic properties and resulted in the presence of an IR probe. Using trends obtained from redox potentials, emission energies, IR spectroelectrochemical responses, and the character of the lowest unoccupied molecular orbitals from DFT studies, it is shown that the first reduction process and luminescence are associated with the ester-substituted C,N,N'-cyclometalated ligand in [Ru(EtO2C-(CNN)-N-Lambda-N-Lambda)(tpy)](+). Cyclometalation in an N,C,N'-bonding motif changed the energetic order of the ruthenium d(zx), d(yz), and d(xy) orbitals. The red-shifted absorption in the N,C,N'-cyclometalated complexes is assigned to MLCT transitions to the tpy ligand. The red shift observed upon introduction of the ester moiety is associated with an increase in intensity of low-energy transitions, rather than a red shift of the main transition. Cyclometalation in the C,N,N'-binding motif also red-shifts the absorption, but the corresponding transition is associated with both ligand types. Luminescence of the cyclometalated complexes is relatively independent of the mode of cyclometalation, obeying the energy gap law within each individual series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive chlorine species such as hypochlorous acid ( HOCl) are cytotoxic oxidants generated by activated neutrophils at the sites of chronic inflammation. Since mitochondria are key mediators of apoptosis and necrosis, we hypothesized that mitochondriotropic antioxidants could limit HOCl-mediated intracellular oxidative injury to human fetal liver cells, preserve mitochondrial function, and prevent cell death. In this current study, we show that recently developed mitochondria-targeted antioxidants ( MitoQ and SS31) significantly protected against HOCl-induced mitochondrial damage and cell death at concentrations >= 25 nM. Our study highlights the potential application of mitochondria-specific targeted antioxidants for the prevention of cellular dysfunction and cell death under conditions of chlorinative stress, as occurs during chronic inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative modification of low-density lipoprotein (LDL) plays an important role in the initiation and progression of atherosclerosis. It has been proposed that the biological action of oxidized LDL (ox-LDL) may be partially attributed to its effect on a shift of the pattern of gene expression in endothelial cells. To examine the transcriptional response to ox-LDL, we applied cDNA array technology to cultured primary human endothelial cells challenged with oxidized human LDL. A twofold or greater difference in the expression of a particular gene was considered a significant difference in transcript abundance. Seventy-eight of the 588 genes analyzed were differentially expressed in response to the treatment. Ox-LDL significantly affected the expression of genes encoding for transcription factors, cell receptors, growth factors, adhesion molecules, extracellular matrix proteins, and enzymes involved in cholesterol metabolism. The alteration of the expression pattern of several genes was substantiated post hoc using RT-PCR. The experimental strategy identified several novel ox-LDL-sensitive genes associated with a "response to injury" providing a conceptual background to be utilized for future studies addressing the molecular basis of the early stages of atherogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to gain a more comprehensive understanding of the aetiology of apolipoprotein E4 genotype-cardiovascular disease (CVD) associations, the impact of the apoE genotype on the macrophage inflammatory response was examined. The murine monocyte-macrophage cell line (RAW 264.7) stably transfected to produce equal amounts of human apoE3 or apoE4 was used. Following LPS stimulation, apoE4-macrophages showed higher and lower concentrations of tumour necrosis factor alpha (pro-inflammatory) and interleukin 10 (anti-inflammatory), respectively, both at mRNA and protein levels. In addition, increased expression of heme oxygenase-1 (a stress-induced anti-inflammatory protein) was observed in the apoE4-cells. Furthermore, in apoE4-macrophages, an enhanced transactivation of the key redox sensitive transcription factor NF-kappa B was shown. Current data indicate that apoE4 macrophages have an altered inflammatory response, which may contribute to the higher CVD risk observed in apoE4 carriers. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production and release of dissolved organic carbon (DOC) from peat soils is thought to be sensitive to changes in climate, specifically changes in temperature and rainfall. However, little is known about the actual rates of net DOC production in response to temperature and water table draw-down, particularly in comparison to carbon dioxide (CO2) fluxes. To explore these relationships, we carried out a laboratory experiment on intact peat soil cores under controlled temperature and water table conditions to determine the impact and interaction of each of these climatic factors on net DOC production. We found a significant interaction (P < 0.001) between temperature, water table draw-down and net DOC production across the whole soil core (0 to −55 cm depth). This corresponded to an increase in the Q10 (i.e. rise in the rate of net DOC production over a 10 °C range) from 1.84 under high water tables and anaerobic conditions to 3.53 under water table draw-down and aerobic conditions between −10 and − 40 cm depth. However, increases in net DOC production were only seen after water tables recovered to the surface as secondary changes in soil water chemistry driven by sulphur redox reactions decreased DOC solubility, and therefore DOC concentrations, during periods of water table draw-down. Furthermore, net microbial consumption of DOC was also apparent at − 1 cm depth and was an additional cause of declining DOC concentrations during dry periods. Therefore, although increased temperature and decreased rainfall could have a significant effect on net DOC release from peatlands, these climatic effects could be masked by other factors controlling the biological consumption of DOC in addition to soil water chemistry and DOC solubility. These findings highlight both the sensitivity of DOC release from ombrotrophic peat to episodic changes in water table draw-down, and the need to disentangle complex and interacting controls on DOC dynamics to fully understand the impact of environmental change on this system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg gÿ1 soil)apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVIenhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation–reduction reactions, potential confounding effects of the test particles on assay conditions should be considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dinuclear complex [(tpy)Ru-II(PCP-PCP)Ru-II(tPY)]Cl-2 (bridging PCP-PCP = 3,3',5,5'-tetrakis(diphenylphosphinomethyl)biphenyl, [C6H2(CH2PPh2)(2)-3,5](2)(2-)) was prepared via a transcyclometalation reaction of the bis-pincer ligand [PC(H)P-PC(H)P] and the Ru(II) precursor [Ru(NCN)(tpy)]Cl (NCN = [C6H3(CH2NMe2)(2)-2,6](-)) followed by a reaction with 2,2':6',2 ''-terpyridine (tpy). Electrochemical and spectroscopic properties of [(tpy)Ru-II(PCP-PCP)Ru-II(tPY)]Cl-2 are compared with those of the closely related [(tpy)Ru-II(NCN-NCN)Ru-II(tpy)](PF6)(2) (NCN-NCN = [C6H2(CH2- NMe2)(2)-3,5](2)(2-)) obtained by two-electron reduction of [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](PF6)(4). The molecular structure of the latter complex has been determined by single-crystal X-ray structure determination. One-electron reduction of [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](PF6)(4) and one-electron oxidation of [(tpy)Ru-II(PCP-PCP)RUII(tpy)]Cl-2 yielded the mixed-valence species [(tpy)Ru-III(NCN-NCN)RUII(tpy)](3+) and [(tpy)Ru-III(PCP-PCP)RUII(tpy)](3+), respectively. The comproportionation equilibrium constants K-c (900 and 748 for [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](4+) and [(tpy)Ru-II(PCP-PCP)RUII(tpy)](2+), respectively) determined from cyclic voltammetric data reveal comparable stability of the [Ru-III-Ru-II] state of both complexes. Spectroelectrochemical measurements and near-infrared (NIR) spectroscopy were employed to further characterize the different redox states with special focus on the mixed-valence species and their NIR bands. Analysis of these bands in the framework of Hush theory indicates that the mixed-valence complexes [(tpy)Ru-III(PCP-PCP)RUII(tpy)](3+) and [(tpy)Ru-III(NCN-NCN)RUII(tpy)](3+) belong to strongly coupled borderline Class II/Class III and intrinsically coupled Class III systems, respectively. Preliminary DFT calculations suggest that extensive delocalization of the spin density over the metal centers and the bridging ligand exists. TD-DFT calculations then suggested a substantial MLCT character of the NIR electronic transitions. The results obtained in this study point to a decreased metal-metal electronic interaction accommodated by the double-cyclometalated bis-pincer bridge when strong sigma-donor NMe2 groups are replaced by weak sigma-donor, pi-acceptor PPh2 groups

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new synthetic route towards the mixed-metal cluster [OS2Ru(CO)(12)] is described together with the syntheses of its PPh3 and iPr-AcPy (iPr-AcPy = 2-acetylpyridine-N-isopropylimine) derivatives. The molecular structures of the novel clusters [Os2Ru(CO)(11)(PPh3)] and [Os2Ru(CO)(10)(iPr-AcPy)] were determined on the basis of crystalline solid solutions of the Os2Ru and corresponding Os-3 species. The structures reveal that coordination of the Lewis bases occurs exclusively at the ruthenium site of [Os2Ru(CO)(12)], which is in agreement with density functional theory (DFT) calculations on several structural isomers of these compounds. According to the time-dependent DFT results, the lowest optically accessible excited state of [Os2Ru(CO)(10)(iPr-AcPy)] has a prevailing sigma(Ru-Os-2)pi*(iPr-AcPy) character, with a partial sigma sigma*(Ru-Os-2) contribution. In weakly coordinating 2-chlorobutane, the excited state has a lifetime tau = 10.4 +/- 1.2 ps and produces biradicals considerably faster than observed for [Os-3(CO)10(iPr-AcPy) (tau = 25.3 +/- 0.7ps)]. In coordinating acetonitrile, the excited state of [Os2Ru(CO)(10)(iPr-AcPy)] decays mono-exponentially with a lifetime tau = 2.1 +/- 0.2 ps. In contrast to [Os-3(CO)(10)(iPr-AcPy)] that forms biradicals as the main primary photoproduct even in strongly coordinating solvents, zwitterion formation from the solvated lowest excited state is observed for the heterometallic cluster. This is concluded from time-resolved absorption studies in the microsecond time domain. Due to the lower tendency of the coordinatively unsaturated Ru+(CO)(2)(iPr-AcPy-/0) moiety to bind a Lewis base, the heteronuclear biradical and zwitterionic photoproducts live significantly shorter than their triosmium counterparts. The influence of the weaker Os-2-Ru(iPr-AcPy) bond on the redox reactivity is clearly reflected in very reactive radical anions formed upon electrochemical reduction of [Os2Ru(CO)(10)(iPr-AcPy)]. The dimer [-OS(CO)(4)-Os(CO)(4)-Ru(CO)(2)(iPr-AcPy)](2)(2-) is the only IR-detectable intermediate reduction product. The dinuclear complex [Os-2(CO)(8)](2-) and insoluble [Ru(CO)(2)(iPr-AcPy)](n), are the ultimate reduction products, proving fragmentation of the OS2Ru core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetylide-based bridging ligands have been widely used in the preparation of complexes that display a degree of electronic interaction between metal-based redox groups located at the ligand termini. The electrochemical response of these systems has been selectively reviewed, with a focus on the variation in properties that accompany changes in the structure of the bridging ligand and the nature of the metal groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The syntheses and characterizations of several complexes containing ferrocenylethynyl and ferrocene-1,1'-bis(ethynyl) groups attached to M(PP)Cp'[M = Fe, Ru, PP = dppe, Cp'= Cp*; M = Ru, Os, PP = (PPh3)(2), dppe, Cp' = Cp] are described. Reactions with tetracyanoethene have given either tetracyanobuta-1,3-dienyl or eta(3)-allylic derivatives, while addition of Me+ afforded the corresponding vinylidene derivatives. Some electrochemical measurements are discussed in terms of electronic communication between the redox-active M(PP)Cp' groups through the ferrocene nucleus. The molecular structures of 14 of these complexes have been determined by crystallographic methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical and photochemical properties of the tetrahedral cluster [Ru3Ir(mu(3)-H)(CO)(13)] were studied in order to prove whether the previously established thermal conversion of this cluster into the hydrogenated derivative [Ru3Ir(mu-H)(3)(CO)(12)] also occurs by means of redox or photochemical activation. Two-electron reduction of [Ru3Ir(mu(3)-H)(CO)(13)] results in the loss of CO and concomitant formation of the dianion [Ru3Ir(mu(3)-H)(CO)(12)](2-). The latter reduction product is stable in CH2Cl2 at low temperatures but becomes partly protonated above 283 K into the anion [Ru3Ir(mu-H)(2)(CO)(12)](-) by traces of water. The dianion [Ru3Ir(mu(3)-H)(CO)(12)](2-) is also the product of the electrochemical reduction of [Ru3Ir(mu-H)(3)(CO)(12)] accompanied by the loss of H-2. Stepwise deprotonation of [Ru3Ir(mu-H)(3)(CO)(12)] with Et4NOH yields [Ru3Ir(mu-H)(2)(CO)(12)](-) and [Ru3Ir(mu(3)-H)(CO)(12)](2-). Reverse protonation of the anionic clusters can be achieved, e. g., with trifluoromethylsulfonic acid. Thus, the electrochemical conversion of [Ru3Ir(mu(3)-H)(CO)(13)] into [Ru3Ir(mu-H)(3)(CO)(12)] is feasible, demanding separate two-electron reduction and protonation steps. Irradiation into the visible absorption band of [Ru3Ir(mu3-H)(CO)(13)] in hexane does not induce any significant photochemical conversion. Irradiation of this cluster in the presence of CO with lambda(irr) > 340 nm, however, triggers its efficient photofragmentation into reactive unsaturated ruthenium and iridium carbonyl fragments. These fragments are either stabilised by dissolved CO or undergo reclusterification to give homonuclear clusters. Most importantly, in H-2-saturated hexane, [Ru3Ir(mu(3)-H)(CO)(13)] converts selectively into the [Ru3Ir(mu-H)(3)(CO)(12)] photoproduct. This conversion is particularly efficient at lambda(irr) > 340 nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water table draw-down is thought to increase peat decomposition and, therefore, DOC release. However, several studies have shown lower DOC concentrations during droughts relative to ‘normal’ periods with high water table. We carried out controlled incubation experiments at 10°C on 10x10 cm peat soil cores collected from six UK sites across a sulphur deposition gradient. Our aim was to quantify the balance between microbial consumption and chemical precipitation of DOC due to episodic acidification driven by sulphur redox reactions by comparing changes in soil water chemistry to microbial activity (i.e. soil respiration and trace gas fluxes). During dry periods, all sites showed a concurrent increase in SO4 and soil respiration and a decline in DOC. However, the magnitude of change in both DOC and SO4 varied considerably between sites according to historical sulphur deposition loads and the variation in acid/base chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work reports the chemistry of a few oxidovanadium(IV) and (V) complexes of the ONS chelating ligand S-benzyl-beta-N-(2-hydroxyphenylethylidine) dithiocarbazate (H2L). Major objective of this work is to arrive at some general conclusions about the influence of binding environment generated by the replacement of an O-donor center by a S-donor point in a ligand (of a similar arrangement of the other O- and N-donor points) on the redox behavior and on the structural features of comparable [VO(OEt)(ONS)] and [VO(OEt)(ONO)] complexes. Synthesis, characterization by various physicochemical techniques (UV-Vis, IR, EPR and elemental analysis), exploration of electrochemical activity of the oxidovanadium(V) complex [(VO)-O-V(OEt) L] (1), the mixed ligand complex [(VO)-O-V(N-O)L] (3) (where N-O is the mono anion of 8-hydroxyquinoline) and a binuclear complex [(VO)-O-V(OEt)L](2)(mu-4,4'-bipy) (2) are reported. Similar studies on of mixed ligand oxidovanadium(IV) complexes of the formula [(VO)-O-V(N-N)L] (4,5) (where N-N = 2,2'-bipy and o-phen) are also presented here. The [(VO)-O-V(OEt)L] complex is pentacoordinated and distorted square pyramidal, while the [V-IV(N-N)L] complexes are hexacoordinated and octahedral. Structural features of the complex 1 were compared with the corresponding aspects of the previously reported analogous complex [(VO)-O-V(OEt)(ONO)] (1').