954 resultados para Hoarding dimension


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report Raman scattering from the boehmite, gamma-, delta- and alpha-phases of the alumina gel. Samples are characterized by transmission and scanning electron microscopy, X-ray diffraction and density measurements. The main Raman line in the boehmite phase is red-shifted as well as asymmetrically broadened with respect to that in the crystalline boehmite, signifying the nanocrystalline nature of the gel. Raman signatures are absent in the gamma- and delta-phases due to the disorder in cation vacancies. We also show that low frequency Raman scattering from the boehmite phase resembles that from a fractal network, characterized in terms of fraction dimension ($) over tilde d. Taking Hausdorff dimension D of the boehmite gel to be 2.5 (or 3.0), the value of ($) over tilde d is 1.33 +/- 0.02 (or 1.44 +/- 0.02), which is close to the theoretically predicted value of 4/3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the Thomas-Fermi method to examine the thermodynamics of particles obeying Haldane exclusion statistics. Specifically, we study Calogero-Sutherland particles placed in a given external potential in one dimension. For the case of a simple harmonic potential (constant density of states), we obtain the exact one-particle spatial density and a {\it closed} form for the equation of state at finite temperature, which are both new results. We then solve the problem of particles in a $x^{2/3} ~$ potential (linear density of states) and show that Bose-Einstein condensation does not occur for any statistics other than bosons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct a driven sandpile slope model and study it by numerical simulations in one dimension. The model is specified by a threshold slope sigma(c), a parameter alpha, governing the local current-slope relation (beyond threshold), and j(in), the mean input current of sand. A non-equilibrium phase diagram is obtained in the alpha-j(in) plane. We find an infinity of phases, characterized by different mean slopes and separated by continuous or first-order boundaries, some of which we obtain analytically. Extensions to two dimensions are discussed.z

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomistic simulation of Ag, Al, Au, Cu, Ni, Pd, and Pt FCC metallic nanowires show a universal FCC -> HCP phase transformation below a critical cross-sectional size, which is reported for the first time in this paper. The newly observed HCP structure is also confirmed from previous experimental results. Above the critical cross-sectional size, initial < 100 >/{100} FCC metallic nanowires are found to be metastable. External thermal heating shows the transformation of metastable < 100 >/{100} FCC nanowires into < 110 >/{111} stable configuration. Size dependent metastability/instability is also correlated with initial residual stresses of the nanowire by use of molecular static simulation using the conjugant gradient method at a temperature of 0 K. It is found that a smaller cross-sectional dimension of an initial FCC nanowire shows instability due to higher initial residual stresses, and the nanowire is transformed into the novel HCP structure. The initial residual stress shows reduction with an increase in the cross-sectional size of the nanowires. A size dependent critical temperature is also reported for metastable FCC nanowires using molecular dynamic, to capture the < 110 >/{111} to < 100 >/{100} shape memory and pseudoelasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seizure electroencephalography (EEG) was recorded from two channels-right (Rt) and left (Lt)-during bilateral electroconvulsive therapy (ECT) (n = 12) and unilateral ECT (n = 12). The EEG was also acquired into a microcomputer and was analyzed without knowledge of the clinical details. EEG recordings of both ECT procedures yielded seizures of comparable duration. The Strength Symmetry Index (SSI) was computed from the early- and midseizure phases using the fractal dimension of the EEG. The seizures of unilateral ECT were characterized by significantly smaller SSI in both phases. More unilateral than bilateral ECT seizures had a smaller than median SSI in both phases. The seizures also differed on other measures as reported in the literature. The findings indicate that SSI may be a potential measure of seizure adequacy that remains to be validated in future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanometric granular materials represent a new class of materials with significant promise. We shall discuss in this paper two phase granular materials where one of the phases having nanometric dimension is embedded in a matrix of larger dimension. These materials show many interesting properties which include structural, magnetic and transport properties, The phase transformation of the embedded particles shows distinctive behavior and yields new insight. We shall first highlight the strategy of synthesis of these materials through rapid solidification. This will be followed by three examples where the nanoscale dimension of the embedded particles play a unique role. These are melting and solidification of the nanodispersed embedded particles and the superconducting transition. (C) 1997 Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perfect or even mediocre weather predictions over a long period are almost impossible because of the ultimate growth of a small initial error into a significant one. Even though the sensitivity of initial conditions limits the predictability in chaotic systems, an ensemble of prediction from different possible initial conditions and also a prediction algorithm capable of resolving the fine structure of the chaotic attractor can reduce the prediction uncertainty to some extent. All of the traditional chaotic prediction methods in hydrology are based on single optimum initial condition local models which can model the sudden divergence of the trajectories with different local functions. Conceptually, global models are ineffective in modeling the highly unstable structure of the chaotic attractor. This paper focuses on an ensemble prediction approach by reconstructing the phase space using different combinations of chaotic parameters, i.e., embedding dimension and delay time to quantify the uncertainty in initial conditions. The ensemble approach is implemented through a local learning wavelet network model with a global feed-forward neural network structure for the phase space prediction of chaotic streamflow series. Quantification of uncertainties in future predictions are done by creating an ensemble of predictions with wavelet network using a range of plausible embedding dimensions and delay times. The ensemble approach is proved to be 50% more efficient than the single prediction for both local approximation and wavelet network approaches. The wavelet network approach has proved to be 30%-50% more superior to the local approximation approach. Compared to the traditional local approximation approach with single initial condition, the total predictive uncertainty in the streamflow is reduced when modeled with ensemble wavelet networks for different lead times. Localization property of wavelets, utilizing different dilation and translation parameters, helps in capturing most of the statistical properties of the observed data. The need for taking into account all plausible initial conditions and also bringing together the characteristics of both local and global approaches to model the unstable yet ordered chaotic attractor of a hydrologic series is clearly demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report results of statistical and dynamic analysis of the serrated stress-time curves obtained from compressive constant strain-rate tests on two metallic glass samples with different ductility levels in an effort to extract hidden information in the seemingly irregular serrations. Two distinct types of dynamics are detected in these two alloy samples. The stress-strain curve corresponding to the less ductile Zr65Cu15Ni10Al10 alloy is shown to exhibit a finite correlation dimension and a positive Lyapunov exponent, suggesting that the underlying dynamics is chaotic. In contrast, for the more ductile Cu47.5Zr47.5Al5 alloy, the distributions of stress drop magnitudes and their time durations obey a power-law scaling reminiscent of a self-organized critical state. The exponents also satisfy the scaling relation compatible with self-organized criticality. Possible physical mechanisms contributing to the two distinct dynamic regimes are discussed by drawing on the analogy with the serrated yielding of crystalline samples. The analysis, together with some physical reasoning, suggests that plasticity in the less ductile sample can be attributed to stick-slip of a single shear band, while that of the more ductile sample could be attributed to the simultaneous nucleation of a large number of shear bands and their mutual interactions. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This letter presents a new class of variational wavefunctions for Fermi systems in any dimension. These wavefunctions introduce correlations between Cooper pairs in different momentum states and the relevant correlations can be computed analytically. At half filling we have a ground state with critical superconducting correlations, that causes negligible increase of the kinetic energy. We find large enhancements in a Cooper-pair correlation function caused purely by the interplay between the uncertainty principle, repulsion and the proximity of half filling. This is surprising since there is no accompanying signature in usual charge and spin response functions, and typifies a novel kind of many-body cooperative behaviour.