972 resultados para Hindu astronomy.
Resumo:
The ionization dynamics of H2 + exposed to high-intensity, high-frequency, ultrashort laser pulses is investigated with two theoretical approaches. The time-dependent Schrödinger equation is solved by a direct numerical method, and a simple two-center interference-diffraction model is studied. The energy and angular distributions of the photoelectron for various internuclear distances and relative orientations between the internuclear axis of the molecule and the polarization of the field are calculated. The main features of the photoelectron spectrum pattern are described well by the interference-diffraction model, and excellent quantitative agreement between the two methods is found. The effect of quantal vibration on the photoelectron spectrum is also calculated. We find that vibrational average produces some broadening of the main features, but that the patterns remain clearly distinguishable.
Resumo:
The spectrum of collective excitations of oblate toroidal condensates within the Bogoliubov approximation was studied, and the dynamical stability of ring currents around the torus explored. The transition from spheroidal to toroidal geometry of the trap displaced the energy levels into narrow bands. A simple, but accurate, formula was detailed for the lowest angular acoustic modes of excitation, and the splitting energy when a background current is present.
Resumo:
A study of the K-alpha radiation emitted from Ti foils irradiated with intense, similar to0.2 J, 67 fs, 800 nm laser pulses, scanning a range of intensities (similar to10(15)-10(18) W cm(-2)), is reported. The brightness of single-shot K-alpha line emission from the front of the targets is recorded. The yield from bare titanium (Ti) is compared to that from plastic (parylene-E) coated Ti. It is demonstrated that, for a defocused beam, a thin layer of plastic increases the yield.
Resumo:
Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed at JPL to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections. The ions are produced by the JPL HCI Facility and passed through a neutral-gas target cell. The product charge states are analyzed by a retarding potential difference technique. Results are made absolute by measuring target pressure, and incident and product ion currents. X-rays emitted from the product ions are detected with a Ge solid-state detector having a resolution of approximately 100 eV. X-ray astronomy has taken major steps forward with the recent launch of the high-resolution satellites Chandra and Newton. The cross sections reported herein are essential for the development of the solar wind comet interaction models inspired by these observations.
Resumo:
We investigate the conditions to entangle two qubits interacting with local environments driven by a continuous-variable correlated field. We find the conditions to transfer the entanglement from the driving field to the qubits both in dynamical and steady-state cases. We see how the quantum correlations initially present in the driving field play a critical role in the entanglement-transfer process. The system we treat is general enough to be adapted to different physical setups.
Resumo:
We report here the first detection of hectometer-size objects by the method of serendipitous stellar occultation. This method consists of recording the diffraction shadow created when an object crosses the observer's line of sight and occults the disk of a background star. One of our detections is most consistent with an object between Saturn and Uranus. The two other diffraction patterns detected are caused by Kuiper Belt objects beyond 100 AU from the Sun and hence are the farthest known objects in the solar system. These detections show that the Kuiper Belt is much more extended than previously believed and that the outer part of the disk could be composed of smaller objects than the inner part. This gives critical clues to understanding the problem of the formation of the outer planets of the solar system.
Resumo:
Jupiter Family comets (JFCs) are short period comets which have recently entered the inner solar system, having previously orbited in the Kuiper Belt since the formation of the planets. We used two nights on the 3.6 m New Technology Telescope (NTT) at the European Southern Observatory, to obtain VRI photometry of three JFCs; 7P/Pons-Winnecke, 14P/Wolf and 92P/Sanguin. These were observed to be stellar in appearance. We find mean effective radii of 2.24 ± 0.02 km for 7P, 3.16 ± 0.01 km for 14P and 2.08 ± 0.01 km for 92P, assuming a geometric albedo of 0.04. From light-curves for each comet we find rotation periods of 7.53 ± 0.10 and 6.22 ± 0.05 h for 14P and 92P respectively. 7P exhibits brightness variations which imply a rotation period of 6.8 = Prot = 9.5 h. Assuming the nuclei to be ellipsoidal the measured brightness variations imply minimum axial ratios a/b of 1.3 ± 0.1 for 7P and 1.7 ± 0.1 for both 14P and 92P. This in turn implies minimum densities of 0.23 ± 0.08 g cm-3 for 7P, 0.32 ± 0.02 g cm-3 for 14P and 0.49 ± 0.06 g cm-3 for 92P. Finally, we measure colour indices of (V-R) = 0.40 ± 0.05 and (R-I) = 0.41 ± 0.06 for 7P/Pons-Winnecke, (V-R) = 0.57 ± 0.07 and (R-I) = 0.51 ± 0.06 for 14P/Wolf, and (V-R) = 0.54 ± 0.04 and (R-I) = 0.54 ± 0.04 for 92P/Sanguin.
Resumo:
Scientific computation has unavoidable approximations built into its very fabric. One important source of error that is difficult to detect and control is round-off error propagation which originates from the use of finite precision arithmetic. We propose that there is a need to perform regular numerical `health checks' on scientific codes in order to detect the cancerous effect of round-off error propagation. This is particularly important in scientific codes that are built on legacy software. We advocate the use of the CADNA library as a suitable numerical screening tool. We present a case study to illustrate the practical use of CADNA in scientific codes that are of interest to the Computer Physics Communications readership. In doing so we hope to stimulate a greater awareness of round-off error propagation and present a practical means by which it can be analyzed and managed.
Resumo:
The interaction between supernova ejecta and circumstellar matter, arising from previous episodes of mass loss, provides us with a means of constraining the progenitors of supernovae. Radio observations of a number of supernovae show quasi-periodic deviations from a strict power-law decline at late times. Although several possibilities have been put forward to explain these modulations, no single explanation has proven to be entirely satisfactory. Here we suggest that Luminous blue variables undergoing S-Doradus type variations give rise to enhanced phases of mass loss that are imprinted on the immediate environment of the exploding star as a series of density enhancements. The variations in mass loss arise from changes in the ionization balance of Fe, the dominant ion that drives the wind. With this idea, we find that both the recurrence timescale of the variability and the amplitude of the modulations are in line with the observations. Our scenario thus provides a natural, single-star explanation for the observed behaviour that is, in fact, expected on theoretical grounds.