966 resultados para High weight molecular polyethylene
Resumo:
Hypertension is a major public health problem and a leading cause of death and disability in both developed and developing countries, affecting onequarter of the world"s adult population. Our aim was to evaluate whether the consumption of gazpacho, a Mediterranean vegetable-based cold soup rich in phytochemicals, is associated with lower blood pressure (BP) and/or reduced prevalence of hypertension in individuals at high cardiovascular risk. Methods and results: We selected 3995 individuals (58% women, mean age 67 y) at high cardiovascular risk (81% hypertensive) recruited into the PREDIMED study. BP, weight, and dietary and physical activity data were collected. In multivariate linear regression analyses, after adjustment, moderate and high gazpacho consumption categories were associated with reduced mean systolic BP of 1.9 mm Hg [95% confidence interval (CI): 3.4; 0.6] and 2.6 mm Hg (CI: 4.2; 1.0), respectively, and reduced diastolic BP of 1.5 mm Hg (CI: 2.3; 0.6) and 1.9 mm Hg (CI: 2.8; 1.1). By multiple-adjusted logistic regression analysis, gazpacho consumption was associated with a lower prevalence of hypertension, with OR Z 0.85 (CI: 0.73; 0.99) for each 250 g/week increase and OR Z 0.73 (CI: 0.55; 0.98) for high gazpacho consumption groups compared to the no-consumption group. Conclusions: Gazpacho consumption was inversely associated with systolic and diastolic BP and prevalence of hypertension in a cross-sectional Mediterranean population at high cardiovascular risk. The association between gazpacho intake and reduction of BP is probably due to synergy among several bioactive compounds present in the vegetable ingredients used to make the recipe.
Resumo:
In vertebrates, different isoforms of fibroblast growth factor 2 (FGF2) exist, which differ by their N-terminal extension. They show different localization and expression levels and exert distinct biological effects. Nevertheless, genetic inactivation of all FGF2 isoforms in the mouse results in only mild phenotypes. Here, we analyzed mouse FGF2, and show that, as in the human, mouse FGF2 contains CTG-initiated high molecular-weight (HMW) isoforms, which contain a nuclear localization signal, and which mediate localization of this isoform to the nucleus. Using green fluorescent protein-FGF2 fusions, we furthermore observed, that C-terminal deletions disable nuclear localization of the short low-molecular-weight (LMW) 18-kDa isoform. This loss of specific localization is accompanied by a loss in heparin binding. We therefore suggest that, first, localization of mouse FGF2 is comparable to that in other vertebrates and, second, FGF2 contains at least two sequences important for nuclear localization, a nuclear localization sequence at the N terminus which is only contained in the HMW isoform, and another sequence at the C terminus, which is only required for localization of the LMW 18-kDa isoform.
Resumo:
Hypertension is a major public health problem and a leading cause of death and disability in both developed and developing countries, affecting onequarter of the world"s adult population. Our aim was to evaluate whether the consumption of gazpacho, a Mediterranean vegetable-based cold soup rich in phytochemicals, is associated with lower blood pressure (BP) and/or reduced prevalence of hypertension in individuals at high cardiovascular risk. Methods and results: We selected 3995 individuals (58% women, mean age 67 y) at high cardiovascular risk (81% hypertensive) recruited into the PREDIMED study. BP, weight, and dietary and physical activity data were collected. In multivariate linear regression analyses, after adjustment, moderate and high gazpacho consumption categories were associated with reduced mean systolic BP of 1.9 mm Hg [95% confidence interval (CI): 3.4; 0.6] and 2.6 mm Hg (CI: 4.2; 1.0), respectively, and reduced diastolic BP of 1.5 mm Hg (CI: 2.3; 0.6) and 1.9 mm Hg (CI: 2.8; 1.1). By multiple-adjusted logistic regression analysis, gazpacho consumption was associated with a lower prevalence of hypertension, with OR Z 0.85 (CI: 0.73; 0.99) for each 250 g/week increase and OR Z 0.73 (CI: 0.55; 0.98) for high gazpacho consumption groups compared to the no-consumption group. Conclusions: Gazpacho consumption was inversely associated with systolic and diastolic BP and prevalence of hypertension in a cross-sectional Mediterranean population at high cardiovascular risk. The association between gazpacho intake and reduction of BP is probably due to synergy among several bioactive compounds present in the vegetable ingredients used to make the recipe.
Resumo:
The present work aimed at evaluating the divergence among common bean accessions by their agronomic, morphological and molecular traits, based on the Ward-MLM procedure. A collection of 57 accessions from the gene bank of Universidade Federal do Espírito Santo was used in this study, from which: 31 were landraces belonging to the community Fortaleza, in the municipality of Muqui, ES, Brazil; 20 accessions were provided by Embrapa Trigo; and 6 were commercial cultivars. Five agronomic traits (plant cycle, number of seeds per pod, number of pods per plant, weight of 100 seeds, and grain yield), five morphological traits (growth habit, plant size, seed shape, seed color, and commercial group) and 16 microsatellite primers were evaluated. High genetic variability was detected considering morphological, agronomic and molecular traits in the 57 common bean accessions studied. The Ward-MLM procedure showed that the ideal number of groups was five, according to the pseudo F and pseudo t² criteria. The accessions from Andean origin had heavier seeds than others and formed a cluster. The Ward-MLM statistical procedure is a useful technique to detect genetic divergence and to cluster genotypes by simultaneously using morphological, agronomic and molecular data.
Resumo:
Under optimal non-physiological conditions of low concentrations and low temperatures, proteins may spontaneously fold to the native state, as all the information for folding lies in the amino acid sequence of the polypeptide. However, under conditions of stress or high protein crowding as inside cells, a polypeptide may misfold and enter an aggregation pathway resulting in the formation of misfolded conformers and fibrils, which can be toxic and lead to neurodegenerative illnesses, such as Alzheimer's, Parkinson's or Huntington's diseases and aging in general. To avert and revert protein misfolding and aggregation, cells have evolved a set of proteins called molecular chaperones. Here, I focussed on the human cytosolic chaperones Hsp70 (DnaK) and HspllO, and co-chaperone Hsp40 (DnaJ), and the chaperonin CCT (GroEL). The cytosolic molecular chaperones Hsp70s/Hspll0s and the chaperonins are highly upregulated in bacterial and human cells under different stresses and are involved both in the prevention and the reversion of protein misfolding and aggregation. Hsp70 works in collaboration with Hsp40 to reactivate misfolded or aggregated proteins in a strict ATP dependent manner. Chaperonins (CCT and GroEL) also unfold and reactivate stably misfolded proteins but we found that it needed to use the energy of ATP hydrolysis in order to evict over- sticky misfolded intermediates that inhibited the unfoldase catalytic sites. Ill In this study, we initially characterized a particular type of inactive misfolded monomeric luciferase and rhodanese species that were obtained by repeated cycles of freeze-thawing (FT). These stable misfolded monomeric conformers (FT-luciferase and FT-rhodanese) had exposed hydrophobic residues and were enriched with wrong ß-sheet structures (Chapter 2). Using FT-luciferase as substrate, we found that the Hsp70 orthologs, called HspllO (Sse in yeast), acted similarly to Hsp70 as were bona fide ATP- fuelled polypeptide unfoldases and was much more than a mere nucleotide exchange factor, as generally thought. Moreover, we found that HspllO collaborated with Hsp70 in the disaggregation of stable protein aggregates in which Hsp70 and HspllO acted as equal partners that synergistically combined their individual ATP-consuming polypeptide unfoldase activities to reactivate the misfolded/aggregated proteins (Chapter 3). Using FT-rhodanese as substrate, we found that chaperonins (GroEL and CCT) could catalytically reactivate misfolded rhodanese monomers in the absence of ATP. Also, our results suggested that encaging of an unfolding polypeptide inside the GroEL cavity under a GroES cap was not an obligatory step as generally thought (Chapter 4). Further, we investigated the role of Hsp40, a J-protein co-chaperone of Hsp70, in targeting misfolded polypeptides substrates onto Hsp70 for unfolding. We found that even a large excess of monomeric unfolded a-synuclein did not inhibit DnaJ, whereas, in contrast, stable misfolded a-synuclein oligomers strongly inhibited the DnaK-mediated chaperone reaction by way of sequestering the DnaJ co-chaperone. This work revealed that DnaJ could specifically distinguish, and bind potentially toxic stably aggregated species, such as soluble a-synuclein oligomers involved in Parkinson's disease, and with the help of DnaK and ATP convert them into from harmless natively unfolded a-synuclein monomers (chapter 5). Finally, our meta-analysis of microarray data of plant and animal tissues treated with various chemicals and abiotic stresses, revealed possible co-expressions between core chaperone machineries and their co-chaperone regulators. It clearly showed that protein misfolding in the cytosol elicits a different response, consisting of upregulating the synthesis mainly of cytosolic chaperones, from protein misfolding in the endoplasmic reticulum (ER) that elicited a typical unfolded protein response (UPR), consisting of upregulating the synthesis mainly of ER chaperones. We proposed that drugs that best mimicked heat or UPR stress at increasing the chaperone load in the cytoplasm or ER respectively, may prove effective at combating protein misfolding diseases and aging (Chapter 6). - Dans les conditions optimales de basse concentration et de basse température, les protéines vont spontanément adopter un repliement natif car toutes les informations nécessaires se trouvent dans la séquence des acides aminés du polypeptide. En revanche, dans des conditions de stress ou de forte concentration des protéines comme à l'intérieur d'une cellule, un polypeptide peu mal se replier et entrer dans un processus d'agrégation conduisant à la formation de conformères et de fibrilles qui peuvent être toxiques et causer des maladies neurodégénératives comme la maladie d'Alzheimer, la maladie de Parkinson ou la chorée de Huntington. Afin d'empêcher ou de rectifier le mauvais repliement des protéines, les cellules ont développé des protéines appelées chaperonnes. Dans ce travail, je me suis intéressé aux chaperonnes cytosoliques Hsp70 (DnaK) et HspllO, la co-chaperones Hsp40 (DnaJ), le complexe CCT/TRiC et GroEL. Chez les bactéries et les humains, les chaperonnes cytosoliques Hsp70s/Hspl 10s et les « chaperonines» sont fortement activées par différentes conditions de stress et sont toutes impliquées dans la prévention et la correction du mauvais repliement des protéines et de leur agrégation. Hsp70 collabore avec Hsp40 pour réactiver les protéines agrégées ou mal repliées et leur action nécessite de 1ATP. Les chaperonines (GroEL) déplient et réactivent aussi les protéines mal repliées de façon stable mais nous avons trouvé qu'elles utilisent l'ATP pour libérer les intermédiaires collant et mal repliés du site catalytique de dépliage. Nous avons initialement caractérisé un type particulier de formes stables de luciférase et de rhodanese monomériques mal repliées obtenues après plusieurs cycles de congélation / décongélation répétés (FT). Ces monomères exposaient des résidus hydrophobiques et étaient plus riches en feuillets ß anormaux. Ils pouvaient cependant être réactivés par les chaperonnes Hsp70+Hsp40 (DnaK+DnaJ) et de l'ATP, ou par Hsp60 (GroEL) sans ATP (Chapitre 2). En utilisant la FT-Luciferase comme substrat nous avons trouvé que HspllO (un orthologue de Hsp70) était une authentique dépliase, dépendante strictement de l'ATP. De plus, nous avons trouvé que HspllO collaborait avec Hsp70 dans la désagrégation d'agrégats stables de protéines en combinant leurs activités dépliase consommatrice d'ATP (Chapitre 3). En utilisant la FT-rhodanese, nous avons trouvé que les chaperonines (GroEL et CCT) pouvaient réactiver catalytiquement des monomères mal repliés en absence d'ATP. Nos résultats suggérèrent également que la capture d'un polypeptide en cours de dépliement dans la cavité de GroEL et sous un couvercle du complexe GroES ne serait pas une étape obligatoire du mécanisme, comme il est communément accepté dans la littérature (Chapitre 4). De plus, nous avons étudié le rôle de Hsp40, une co-chaperones de Hsp70, dans l'adressage de substrats polypeptidiques mal repliés vers Hsp70. Ce travail a révélé que DnaJ pouvait différencier et lier des polypeptide mal repliés (toxiques), comme des oligomères d'a-synucléine dans la maladie de Parkinson, et clairement les différencier des monomères inoffensifs d'a-synucléine (Chapitre 5). Finalement une méta-analyse de données de microarrays de tissus végétaux et animaux traités avec différents stress chimiques et abiotiques a révélé une possible co-expression de la machinerie des chaperonnes et des régulateurs de co- chaperonne. Cette meta-analyse montre aussi clairement que le mauvais repliement des protéines dans le cytosol entraîne la synthèse de chaperonnes principalement cytosoliques alors que le mauvais repliement de protéines dans le réticulum endoplasmique (ER) entraine une réponse typique de dépliement (UPR) qui consiste principalement en la synthèse de chaperonnes localisées dans l'ER. Nous émettons l'hypothèse que les drogues qui reproduisent le mieux les stress de chaleur ou les stress UPR pourraient se montrer efficaces dans la lutte contre le mauvais repliement des protéines et le vieillissement (Chapitre 6).
Resumo:
The objective of this study was to estimate genetic parameters for survival and weight of Nile tilapia (Oreochromis niloticus), farmed in cages and ponds in Brazil, and to predict genetic gain under different scenarios. Survival was recorded as a binary response (dead or alive), during harvest time in the 2008 grow-out period. Genetic parameters were estimated using a Bayesian mixed linear-threshold animal model via Gibbs sampling. The breeding population consisted of 2,912 individual fish, which were analyzed together with the pedigree of 5,394 fish. The heritabilities estimates, with 95% posterior credible intervals, for tagging weight, harvest weight and survival were 0.17 (0.09-0.27), 0.21 (0.12-0.32) and 0.32 (0.22-0.44), respectively. Credible intervals show a 95% probability that the true genetic correlations were in a favourable direction. The selection for weight has a positive impact on survival. Estimated genetic gain was high when selecting for harvest weight (5.07%), and indirect gain for tagging weight (2.17%) and survival (2.03%) were also considerable.
Resumo:
BACKGROUND: The visceral (VAT) and subcutaneous (SCAT) adipose tissues play different roles in physiology and obesity. The molecular mechanisms underlying their expansion in obesity and following body weight reduction are poorly defined. METHODOLOGY: C57Bl/6 mice fed a high fat diet (HFD) for 6 months developed low, medium, or high body weight as compared to normal chow fed mice. Mice from each groups were then treated with the cannabinoid receptor 1 antagonist rimonabant or vehicle for 24 days to normalize their body weight. Transcriptomic data for visceral and subcutaneous adipose tissues from each group of mice were obtained and analyzed to identify: i) genes regulated by HFD irrespective of body weight, ii) genes whose expression correlated with body weight, iii) the biological processes activated in each tissue using gene set enrichment analysis (GSEA), iv) the transcriptional programs affected by rimonabant. PRINCIPAL FINDINGS: In VAT, "metabolic" genes encoding enzymes for lipid and steroid biosynthesis and glucose catabolism were down-regulated irrespective of body weight whereas "structure" genes controlling cell architecture and tissue remodeling had expression levels correlated with body weight. In SCAT, the identified "metabolic" and "structure" genes were mostly different from those identified in VAT and were regulated irrespective of body weight. GSEA indicated active adipogenesis in both tissues but a more prominent involvement of tissue stroma in VAT than in SCAT. Rimonabant treatment normalized most gene expression but further reduced oxidative phosphorylation gene expression in SCAT but not in VAT. CONCLUSION: VAT and SCAT show strikingly different gene expression programs in response to high fat diet and rimonabant treatment. Our results may lead to identification of therapeutic targets acting on specific fat depots to control obesity.
Resumo:
PIDD (p53-induced protein with a death domain [DD]), together with the bipartite adapter protein RAIDD (receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a DD), is implicated in the activation of pro-caspase-2 in a high molecular weight complex called the PIDDosome during apoptosis induction after DNA damage. To investigate the role of PIDD in cell death initiation, we generated PIDD-deficient mice. Processing of caspase-2 is readily detected in the absence of PIDDosome formation in primary lymphocytes. Although caspase-2 processing is delayed in simian virus 40-immortalized pidd(-/-) mouse embryonic fibroblasts, it still depends on loss of mitochondrial integrity and effector caspase activation. Consistently, apoptosis occurs normally in all cell types analyzed, suggesting alternative biological roles for caspase-2 after DNA damage. Because loss of either PIDD or its adapter molecule RAIDD did not affect subcellular localization, nuclear translocation, or caspase-2 activation in high molecular weight complexes, we suggest that at least one alternative PIDDosome-independent mechanism of caspase-2 activation exists in mammals in response to DNA damage.
Resumo:
The screening of testosterone (T) misuse for doping control is based on the urinary steroid profile, including T, its precursors and metabolites. Modifications of individual levels and ratio between those metabolites are indicators of T misuse. In the context of screening analysis, the most discriminant criterion known to date is based on the T glucuronide (TG) to epitestosterone glucuronide (EG) ratio (TG/EG). Following the World Anti-Doping Agency (WADA) recommendations, there is suspicion of T misuse when the ratio reaches 4 or beyond. While this marker remains very sensitive and specific, it suffers from large inter-individual variability, with important influence of enzyme polymorphisms. Moreover, use of low dose or topical administration forms makes the screening of endogenous steroids difficult while the detection window no longer suits the doping habit. As reference limits are estimated on the basis of population studies, which encompass inter-individual and inter-ethnic variability, new strategies including individual threshold monitoring and alternative biomarkers were proposed to detect T misuse. The purpose of this study was to evaluate the potential of ultra-high pressure liquid chromatography (UHPLC) coupled with a new generation high resolution quadrupole time-of-flight mass spectrometer (QTOF-MS) to investigate the steroid metabolism after transdermal and oral T administration. An approach was developed to quantify 12 targeted urinary steroids as direct glucuro- and sulfo-conjugated metabolites, allowing the conservation of the phase II metabolism information, reflecting genetic and environmental influences. The UHPLC-QTOF-MS(E) platform was applied to clinical study samples from 19 healthy male volunteers, having different genotypes for the UGT2B17 enzyme responsible for the glucuroconjugation of T. Based on reference population ranges, none of the traditional markers of T misuse could detect doping after topical administration of T, while the detection window was short after oral TU ingestion. The detection ability of the 12 targeted steroids was thus evaluated by using individual thresholds following both transdermal and oral administration. Other relevant biomarkers and minor metabolites were studied for complementary information to the steroid profile, including sulfoconjugated analytes and hydroxy forms of glucuroconjugated metabolites. While sulfoconjugated steroids may provide helpful screening information for individuals with homozygotous UGT2B17 deletion, hydroxy-glucuroconjugated analytes could enhance the detection window of oral T undecanoate (TU) doping.
Resumo:
Mendelian cardiomyopathies and arrhythmias are characterized by an important genetic heterogeneity, rendering Sanger sequencing very laborious and expensive. As a proof of concept, we explored multiplex targeted high-throughput sequencing (HTS) as a fast and cost-efficient diagnostic method for individuals suffering from Mendelian cardiac disorders. We designed a DNA capture assay including all exons from 130 genes involved in cardiovascular Mendelian disorders and analysed simultaneously four samples by multiplexing. Two patients had familial hypertrophic cardiomyopathy (HCM) and two patients suffered from long QT syndrome (LQTS). In patient 1 with HCM, we identified two known pathogenic missense variants in the two most frequently mutated sarcomeric genes MYH7 and MYBPC. In patient 2 with HCM, a known acceptor splice site variant in MYBPC3 was found. In patient 3 with LQTS, two missense variants in the genes SCN5A and KCNQ were identified. Finally, in patient 4 with LQTS a known missense variant was found in MYBPC3, which is usually mutated in patients with cardiomyopathy. Our results showed that multiplex targeted HTS works as an efficient and cost-effective tool for molecular diagnosis of heterogeneous disorders in clinical practice and offers new insights in the pathogenesis of these complex diseases.
Resumo:
The objective of this work was to standardize a semiautomated method for genotyping soybean, based on universal tail sequence primers (UTSP), and to compare it with the conventional genotyping method that uses electrophoresis in polyacrylamide gels. Thirty soybean cultivars were genotypically characterized by both methods, using 13 microsatellite loci. For the UTSP method, the number of alleles (NA) was 50 (2-7 per marker) and the polymorphic information content (PIC) ranged from 0.40 to 0.74. For the conventional method, the NA was 38 (2-5 per marker) and the PIC varied from 0.39 to 0.67. The genetic dissimilarity matrices obtained by the two methods were highly correlated with each other (0.8026), and the formed groups were coherent with the phenotypic data used for varietal registration. The 13 markers allowed the distinction of all analyzed cultivars. The low cost of the UTSP method, associated with its high accuracy, makes it ideal for the characterization of soybean cultivars and for the determination of genetic purity.
Resumo:
The objective of this work was to characterize morphologically and molecularly the genetic diversity of cassava accessions, collected from different regions in Brazil. A descriptive analysis was made for 12 morphological traits in 419 accessions. Data was transformed into binary data for cluster analysis and analysis of molecular variance. A higher proportion of white or cream (71%) root cortex color was found, while flesh colors were predominantly white (49%) and cream (42%). Four accession groups were classified by the cluster analysis, but they were not grouped according to their origin, which indicates that diversity is not structured in space. The variation was greater within regions (95.6%). Sixty genotypes were also evaluated using 14 polymorphic microsatellite markers. Molecular results corroborated the morphological ones, showing the same random distribution of genotypes, with no grouping according to origin. Diversity indices were high for each region, and a greater diversity was found within regions, with: a mean number of alleles per locus of 3.530; observed and expected heterozygosity of 0.499 and 0.642, respectively; and Shannon index of 1.03. The absence of spatial structure among cassava genotypes according to their origins shows the anthropic influence in the distribution and movement of germplasm, both within and among regions.
Resumo:
The objective of this work was to quantify the genetic diversity of elite genotypes of irrigated barley in the Brazilian savanna. Thirty elite barley genotypes from Embrapa Cerrados' collection were evaluated using 160 RAPD markers, 12 agronomic traits related to yield components, and 10 malting quality parameters. The genetic dissimilarity matrices based on molecular markers, quantitative traits, and malting quality characters were calculated and a cluster analysis was performed using the unweighted pair-group method with arithmetic mean (UPGMA) as grouping criterion. High genetic diversity among accessions were observed. The estimated genetic dissimilarities were weakly correlated, showing the complementarity of the different character groups. Selection indices and graphical dispersion analysis allowed the selection of promising genotypes and the indication of suitable crosses for maximizing the heterotic effects in breeding programs for irrigated barley in the Brazilian savanna.
Resumo:
Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.
Resumo:
Asexuality is rare in animals in spite of its apparent advantage relative to sexual reproduction, indicating that it must be associated with profound costs [1-9]. One expectation is that reproductive advantages gained by new asexual lineages will be quickly eroded over time [3, 5-7]. Ancient asexual taxa that have evolved and adapted without sex would be "scandalous" exceptions to this rule, but it is often difficult to exclude the possibility that putative asexuals deploy some form of "cryptic" sex, or have abandoned sex more recently than estimated from divergence times to sexual relatives [10]. Here we provide evidence, from high intraspecific divergence of mitochondrial sequence and nuclear allele divergence patterns, that several independently derived Timema stick-insect lineages have persisted without recombination for more than a million generations. Nuclear alleles in the asexual lineages displayed significantly higher intraindividual divergences than in related sexual species. In addition, within two asexuals, nuclear allele phylogenies suggested the presence of two clades, with sequences from the same individual appearing in both clades. These data strongly support ancient asexuality in Timema and validate the genus as an exceptional opportunity to attack the question of how asexual reproduction can be maintained over long periods of evolutionary time.