947 resultados para Hierarchical Bayesian Methods
Resumo:
We develop methods for Bayesian inference in vector error correction models which are subject to a variety of switches in regime (e.g. Markov switches in regime or structural breaks). An important aspect of our approach is that we allow both the cointegrating vectors and the number of cointegrating relationships to change when the regime changes. We show how Bayesian model averaging or model selection methods can be used to deal with the high-dimensional model space that results. Our methods are used in an empirical study of the Fisher effect.
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting model as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.