966 resultados para Harmonic
Resumo:
A three-dimensional ocean circulation model, called Princeton Ocean Model (POM), is employed to simulate tides and tidal currents in Liaodong Bay. The nested grid technique is adopted to improve the computation precision. Computed harmonic constants of M-1, M-2 tides at five tidal gauge stations and surface elevations at two oil platforms are compared with those observed, and show good agreements with them. Based on the calculated results, the co-amplitude and co-phase tag lines of nil and M-2 tidal constituents, the residual current field of M-2 constituent, tidal form, tidal Current ellipse and the moving style of tidal current are given. It is found that diurnal tidal constituents have no amphidromic point whereas semi-diurnal constituents have one in the region of interest. Meanwhile, some meaningful results are concluded and presented, which are conducive to a thorough knowledge of the characteristics of tides and tidal currents in the Liaodong Bay.
Resumo:
Under alternating current electric field, effective response of granular nonlinear composites with spherical coated inclusions is investigated in the dilute limit by using the perturbation approach. For an external sinusoidal applied field with finite frequency omega, the local fields and potentials of composites in general consist of components at all harmonics for cubic nonlinear constitutive relationships. We derive the local potentials of spherical coated composites at harmonics. Moreover, we give the formulae of the nonlinear effective AC susceptibility at the third harmonic frequency.
Resumo:
A method for determining effective dielectric responses of Kerr-like coated nonlinear composites under the alternating current (AC) electric field is proposed by using perturbation approach. As an example, we have investigated the composite with coated cylindrical inclusions randomly embedded in a host under an external sinusoidal field with finite frequency omega. The local field and potential of composites in general consists of components with all harmonic frequencies. The effective nonlinear AC responses at all harmonics are induced by the coated nonlinear composites because of the nonlinear constitutive relation. Moreover, we have derived the formulae of effective nonlinear AC responses at the fundamental frequency and the third harmonic in the dilute limit.
Resumo:
The principal tidal constituents M-2, S-2, K-1 and O-1 in the South China Sea, Gulf of Tonkin and Gulf of Thailand are simulated simultaneously using the numerical scheme of Kwok et al. (1995 Proceedings of the 1st Asian Computational Fluid Dynamics Conference, pp. 16-19). The average differences between the computed and observed harmonic constants are mostly within 5 cm and 10 degrees for amplitudes and phase-lags, respectively. The simulated tidal regimes in the present model are believed to be more accurate than the previous numerical results. Our studies confirm that a clockwise rotating M-2 amphidromic system lies in the southeast of the Gulf of Thailand and an S-2 amphidromic system at the near-shore area of the northeast South China Sea. The linear tidal energy equation developed by Garrett (1975 Deep-Sea Research 22, 23-35) is generalized to the nonlinear case. Based on the numerical results, the energy budgets in the South China Sea and its subareas, namely the Taiwan Strait, the Gulf of Tonkin, the Gulf of Thailand and the remaining area are investigated. The tidal motion in the Taiwan Strait is maintained mainly by the energy fluxes from the East China Sea for both semidiurnal and diurnal species and partially from the Luzon Strait for semidiurnal species. For the other parts of the South China Sea, the tidal motion is mainly maintained by the energy fluxes through the Luzon Strait. The energy inputs from the tide-generating force are negative for semidiurnal species and positive for diurnal species. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Under an external alternating current (ac) field, the effective ac dielectric response of graded composites consisting of the graded cylindrical inclusion having complex permittivity profiles has been investigated theoretically. A model that the dielectric function is assumed to be a constant while the conductivity has a power-law dependence on the radial variable r, namely epsilon(i)(r) = A + cr(k)/i omega. is studied and the local analytical potentials of the inclusion and the host regions are derived in terms of hyper-geometric function. In the dilute limit, the effective ac dielectric response is predicted. Meanwhile, we have given the exact proof of the differential effective dipole approximation (DEDA) method, which is suitable to arbitrary graded profiles. Furthermore, we have given the analytical potentials and the effective ac dielectric responses of coated graded cylindrical composites for two cases, case (a) graded core and case (b) graded coated layer, having the graded dielectric profiles, respectively. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.
Resumo:
本文依据收集到的392个地面验潮站8个主要分潮(M2、S2、K1、O1、N2、K2、P1及Q1)的调和常数,对现有7个全球大洋潮汐模式的准确度进行了检验,结果显示各模式在深海区域均达到了比较高的准确度,相互之间差别也不大。经验模式GOT00和CSR4.0、同化模式NAO99、反演同化模式TPXO7.0、数值同化模式FES2002和FES2004的M2分潮均方根偏差在3 cm左右,其它分潮(S2、K1、O1、N2、K2、P1及Q1)大约在1~2 cm。本文还依据中国近海18个岛屿的调和常数对其中的5个大洋潮汐模式的准确度进行了检验,结果表明,M2分潮均方根偏差在6~14 cm,明显高于大洋部分的偏差,其中日本国家天文台的潮汐模式NAO99在中国近海的结果相对较准确。 我们利用1992年8月至2008年8月的TOPEX/POSEIDON和JASON-1(T/P-J)卫星高度计资料,对沿卫星轨道的302816个站点进行了14个分潮的潮汐调和分析,得到了全球大洋潮汐的8个主要分潮以及2个气象分潮Sa、Ssa的经验同潮图。主要结果有:(1)各分潮在卫星上升轨道与下降轨道的交叉点(约7000个)相关性分析表明:M2分潮的振幅和迟角的相关系数很高(分别为0.9965和0.9961);S2,K1,O1和Sa分潮也有较好的相关性(相关系数为0.94~0.99);(2)该结果与392地面个验潮站吻合较好,其中M2分潮的振幅、迟角和向量的均方根偏差分别为:1.73 cm,2.340和2.93 cm;S2,K1和O1分潮的振幅、迟角和向量的均方根偏差为1 cm左右,5.250~7.270和1.5~2.1 cm,该精度与最近几年国际上的主要大洋潮汐模式的准确度相近;(3)首次通过卫星资料获得了Sa、Ssa分潮的同潮图。周期为1年的Sa分潮与大洋105个地面站相比,振幅、迟角和向量的均方根偏差分别为1.50 cm、18.360和2.16 cm。在此基础上,进一步分析了构成Sa、Ssa气象分潮的两个主要因素(海水密度以及海面气压)在全球的分布。 在T/P-J等卫星资料无法覆盖到南大洋和北冰洋,本文利用Princeton Ocean Model(POM)进行了数值模拟,模拟结果与162个地面实测站(其中南大洋30个,北冰洋132个)的观测比较一致。基于卫星资料分析的结果和数值模拟结果合并得到了全球大洋的8个主要分潮同潮图。在此基础上通过全球潮汐能量耗散的计算得到潮能通量的分布,并得到全球M2、S2、K1和O1分潮的潮汐能量耗散率为2.431TW、0.401TW、0.336TW和0.176TW。 本文还利用卫星资料对南海潮汐进行了研究,在中国南海,获得了主要的半日潮、全日潮、四分日分潮和长周期分潮(M2,S2,N2,K2,K1,O1,P1,Q1,M4, MS4,Sa, Ssa)的经验同潮图。与南海沿岸94个地面验潮站的数据符合得比较好,M2,S2,K1及O1等4个主要分潮的平均振幅差为2~4 cm,均方根偏差分别是9~11 cm.其它4个主要分潮N2,K2,P1,Q1的平均振幅差为1~2 cm,均方根偏差为2~4 cm。此外,本文还利用卫星高度计资料潮汐分析结果沿卫星轨道进行高通滤波,分离得出中国近海的M2,S2,K1及O1分潮的内潮信息。
Resumo:
A novel triazole derivative 4-(2-hydrobenzylideneamino)-3-(1, 2, 4-triazol-4-ylmethyl)-1H-1, 2, 4-triazole-5 (4H)-thione(1) was synthesized and characterized using elemental analysis, MR, and H-1 NMR, and its crystal structure was determined via X-ray single crystal diffraction analysis. Crystal data: monoclinic, P2 (1)/c, a = 0.83335 (9) nm, b = 1. 49777 (16) run, c = 1. 14724 (12) nm, beta = 107. 990 (2)degrees, D = 1. 470 Mg/m(3), and Z = 4. The geometries and the vibrational frequencies were determined using the density functional theory(DFT) method at the B3LYP/6-31G* level. To demonstrate the accuracy of the reaction route of compound 1, one of the important intermediates was also tested using the same method. The structural parameters of the two compounds calculated using the DFT study are close to those of the crystals, and the harmonic vibrations of the two compounds computed via the DFT method are in good agreement with those in the observed IR spectral data. The thermodynamic properties of the title compound were calculated, and the compound shows a good structural stability at normal temperature. The test results of biological activities show that it has a certain bactericidal ability.
Resumo:
To model the adsorption of Na+ in aqueous solution on the semiconductor surface, the interactions of Na+ and Na+(H2O)(n) (n = 1-6) with a clean Si(111) surface were investigated by using hybrid density functional theory (B3LYP) and Moller-Plesset second-order perturbation (MP2) methods. The Si(111) surface was described with Si8H12, Si16H20, and Si22H21 Cluster models. The effect of the basis set superposition error (BSSE) was taken into account by applying the counterpoise (CP) correction. The calculated results indicated that the interactions between the Na+ cation and the dangling bonds of the Si(111) surface are primarily electrostatic with partial orbital interactions. The magnitude of the binding energies depends weakly on the adsorption sites and the size of the clusters. When water molecules are present, the interaction between the Nal and Si(I 11) surfaces weakens and the binding energy has the tendency to saturate. On a Si22H21 cluster described surface, the optimized Na+-surface distance for Na+(H2O)(5) adsorbed at on-top site is 4.16 angstrom and the CP-corrected binding energy (MP2) is -35.4 kJ/mol, implying a weakly adsorption of hydrated Na+ cation on clean Si(111) surface.
Resumo:
为了实现定位抓取任务,提出基于网络的直角坐标机器人视觉控制系统。针对机器人运动控制的非线性与强耦合特性,采用神经网络控制器,构建了图像偏差与运动控制量之间的对应关系。通过对图像增强、边缘提取、特征提取等图像处理方法的综合分析,提出了一套优化组合图像处理法。在计算机网络环境下,采用自定义协议实现图像处理器与运动控制器协调控制,并将远程监控应用到机器人控制中。实验结果表明,该系统能够在视野范围内自动实现定位抓取动作。
Resumo:
在机器人驱动中经常采用谐波传动。但谐波减速器的柔性、非线性摩擦、随速度波动、低阻尼等因素会给负载端带来振动 ,导致工作端的轨迹跟踪精度不高。为了抑制其振动 ,实现高精度轨迹跟踪控制 ,提出利用加速度传感器反馈控制来抑制负载端的振动、力矩干扰和动力学效应 ,提高其响应性能。理论分析和实验结果证实了提出方法的可行性。
Resumo:
在分析谐波传动系统特性的基础上,建立了谐波传动系统的基于加速度传感器反馈控制的数学模型,通过仿真分析和实验研究结果表明,加速度反馈控制能有效地换制谐波传动系统负载端的振动。
Resumo:
谐波传动有很多优点,在机器人驱动中经常被使用.但谐波传动也有一些缺点,如柔性等因素影响负载端轨迹跟踪精度.本文系统地分析了谐波传动系统的动力学特性,建立了包括电机转子惯量在内的动力学模型,疽对系统进行全面实验研究的基础上总结出谐波传动系统中存在的问题,采用相应的基于传感器的控制策略克服存在的问题,提高系统的响应性能.从理论分析和实验结果证实了提出方法的可行性。
Resumo:
The theory researches of prediction about stratigraphic filtering in complex condition are carried out, and three key techniques are put forward in this dissertation. Theoretical aspects: The prediction equations for both slant incidence in horizontally layered medium and that in laterally variant velocity medium are expressed appropriately. Solving the equations, the linear prediction operator of overlaid layers, then corresponding reflection/transmission operators, can be obtained. The properties of linear prediction operator are elucidated followed by putting forward the event model for generalized Goupillaud layers. Key technique 1: Spectral factorization is introduced to solve the prediction equations in complex condition and numerical results are illustrated. Key technique 2: So-called large-step wavefield extrapolation of one-way wave under laterally variant velocity circumstance is studied. Based on Lie algebraic integral and structure preserving algorithm, large-step wavefield depth extrapolation scheme is set forth. In this method, the complex phase of wavefield extrapolation operator’s symbol is expressed as a linear combination of wavenumbers with the coefficients of this linear combination in the form of the integral of interval velocity and its derivatives over depth. The exponential transform of the complex phase is implemented through phase shifting, BCH splitting and orthogonal polynomial expansion. The results of numerical test show that large-step scheme takes on a great number of advantages as low accumulating error, cheapness, well adaptability to laterally variant velocity, small dispersive, etc. Key technique 3: Utilizing large-step wavefield extrapolation scheme and based on the idea of local harmonic decomposition, the technique generating angle gathers for 2D case is generalized to 3D case so as to solve the problems generating and storing 3D prestack angle gathers. Shot domain parallel scheme is adopted by which main duty for servant-nodes is to compute trigonometric expansion coefficients, while that for host-node is to reclaim them with which object-oriented angle gathers yield. In theoretical research, many efforts have been made in probing into the traits of uncertainties within macro-dynamic procedures.
Resumo:
Solar ultraviolet (UV) radiation at wavelengths less than 400 nm is an important source of energy for aeronomic processes throughout the solar system. Solar UV photons are absorbed in planetary atmospheres, as well as throughout the heliosphere, via photodissociation of molecules, photoionization of molecules and atoms, and photoexcitation toexcitation including resonance scattering. In this paper, the solar irradiances data measured by TIMED SEE, as well as the solar proxies such as F10.7 and Mg II, thermosphere neutral density of CHAMP measurements and topside ionospheric plasmas densities from DMSP, are used to analyze solar irradiance effects on the variabilities of the thermosphere and the ionosphere. First, thermosphere densities near 410 km altitude are analyzed for solar irradiance variability effects during the period 2002-2004. Correlations between the densities and the solar irradiances for different spectral lines and wavelength ranges reveal significantly different characteristics. The density correlates remarkably well with all the selected solar irradiances except the lower chromospheric O I (130.4 nm) emission. Among the chosen solar proxies, the Mg II core-to-wing ratio index, EUV (30-120 nm) and F10.7 show the highest correlations with the density for short-term (< ~27 days) variations. For both long- (> ~27 days) and short-term variations, linear correlation coefficients exhibit a decreasing trend from low latitudes towards high latitudes. The density variability can be effectively modeled (capturing 71% of the variance) using multiple solar irradiance indices, including F10.7, SEUV (the EUV 30-120 nm index), and SFUV (the FUV 120-193 nm index), in which a lag time of 1 day was used for both F10.7 and SEUV, and 5 days for SFUV. In our regression formulation SEUV has the largest contribution to the density variation (40%), with the F10.7 having the next largest contribution (32%) and SFUV accounting for the rest (28%). Furthermore, a pronounced period of about 27.2 days (mean period of the Sun's rotation) is present in both density and solar irradiance data of 2003 and 2004, and a pronounced period of about 54.4 days (doubled period of the solar rotation) is also revealed in 2004. However, soft X-ray and FUV irradiances did not present a pronounced 54.4 day period in 2004, in spite of their high correlation with the densities. The Ap index also shows 54-day periodicities in 2004, and magnetic activity, together with solar irradiance, affects the 54-day variation in density significantly. In addition, NRLMSISE00, DTM-2000 and JB2006 model predictions are compared with density measurements from CHAMP to assess their accuracy, and the results show that these models underestimate the response of the thermosphere to variations induced by solar rotation. Next, the equatorial topside ionospheric plasmas densities Ni are analyzed for solar irradiance variability effects during the period 2002-2005. Linear correlations between Ni and the solar irradiances for different wavelength ranges reveal significantly different characteristics. XUV (0-35 nm) and EUV (115-130 nm) show higher correlation with Ni for the long-term variations, whereas EUV (35-115 nm) show higher correlation for the short-term variations. Moreover, partial correlation analysis shows that the long-term variations of Ni are affected by both XUV (0-35 nm) and EUV (35-115 nm), whereas XUV (0-35 nm) play a more important role; the short-term variations of Ni are mostly affected by EUV (35-115 nm). Furthermore, a pronounced period of about 27 days is present in both Ni and solar irradiance data of 2003 and 2004, and a pronounced period of about 54 days is also revealed in 2004. Finally, prompted by previous studies that have suggested solar EUV radiation as a means of driving the semiannual variation, we investigate the intra-annual variation in thermosphere neutral density near 400 km during 2002-2005. The intra-annual variation, commonly referred to as the ‘semiannual variation’, is characterized by significant latitude structure, hemispheric asymmetries, and inter-annual variability. The magnitude of the maximum yearly difference, from the yearly minimum to the yearly maximum, varies by as much as 60% from year to year, and the phases of the minima and maxima also change by 20-40 days from year to year. Each annual harmonic of the intra-annual variation, namely, annual, semiannual, ter-annual and quatra-annual, exhibits a decreasing trend from 2002 through 2005 that is correlated with the decline in solar activity. In addition, some variations in these harmonics are correlated with geomagnetic activity, as represented by the daily mean value of Kp. Recent empirical models of the thermosphere are found to be deficient in capturing most of the latitude dependencies discovered in our data. In addition, the solar flux and geomagnetic activity proxies that we have employed do not capture some latitude and inter-annual variations detected in our data. It is possible that these variations are partly due to other effects, such as seasonal-latitudinal variations in turbopause altitude (and hence O/N2 composition) and ionosphere coupling processes that remain to be discovered in the context of influencing the intra-annual variations depicted here. Our results provide a new dataset to challenge and validate thermosphere-ionosphere general circulation models that seek to delineate the thermosphere intra-annual variation and to understand the various competing mechanisms that may contribute to its existence and variability. We furthermore suggest that the term “intra-annual” variation be adopted to describe the variability in thermosphere and ionosphere parameters that is well-captured through a superposition of annual, semiannual, ter-annual, and quatra-annual harmonic terms, and that “semiannual’ be used strictly in reference to a pure 6-monthly sinusoidal variation. Moreover, we propose the term “intra-seasonal” to refer to those shorter-term variations that arise as residuals from the above Fourier representation.