980 resultados para HYPOXIC-ISCHEMIC-ENCEPHALOPATHY
Resumo:
Adverse events in utero are associated with the occurrence of chronic diseases in adulthood. We previously demonstrated in mice that perinatal hypoxia resulted in altered pulmonary circulation in adulthood, with a decreased endothelium-dependent relaxation of pulmonary arteries, associated with long-term alterations in the nitric oxide (NO)/cyclic GMP pathway. The present study investigated whether inhaled NO (iNO) administered simultaneously to perinatal hypoxia could have potential beneficial effects on the adult pulmonary circulation. Indeed, iNO is the therapy of choice in humans presenting neonatal pulmonary hypertension. Long-term effects of neonatal iNO therapy on adult pulmonary circulation have not yet been investigated. Pregnant mice were placed in hypoxia (13% O2) with simultaneous administration of iNO 5 days before delivery until 5 days after birth. Pups were then raised in normoxia until adulthood. Perinatal iNO administration completely restored acetylcholine-induced relaxation, as well as endothelial nitric oxide synthase protein content, in isolated pulmonary arteries of adult mice born in hypoxia. Right ventricular hypertrophy observed in old mice born in hypoxia compared to controls was also prevented by perinatal iNO treatment. Therefore, simultaneous administration of iNO during perinatal hypoxic exposure seems able to prevent adverse effects of perinatal hypoxia on the adult pulmonary circulation.
Resumo:
Background: To study the characteristics of vascular aphasia in a cohort of patients with a first-ever stroke. Methods: All patients admitted to the Lausanne neurology department for a first-ever stroke between 1979 and 2004 were included. Neurological examination including language was performed on admission. Stroke risk factors, stroke origin and location, associated symptoms and Rankin scale scores were recorded for each patient. The influence of these factors on aphasia frequency and subtypes was analyzed using logistic regression models. Results: 1,541 (26%) of patients included in this study had aphasia. The more frequent clinical presentations were expressive-receptive aphasia (38%) and mainly expressive aphasia (37%), whereas mainly receptive aphasia was less frequently observed (25%). In ischemic stroke, the frequency of aphasia increased with age (55% of nonaphasic vs. 61% of aphasic patients were more than 65 years old), female sex (40% of women in the nonaphasia group vs. 44% in the aphasia group) and risk factors for cardioembolic origin (coronary heart disease 20 vs. 26% and atrial fibrillation 15 vs. 24%). Stroke aphasia was more likely associated with superficial middle cerebral artery (MCA) stroke and leads to relevant disability. Clinical subtypes depended on stroke location and associated symptoms. Exceptions to the classic clinical-topographic correlations were not rare (26%). Finally, significant differences were found for patients with crossed aphasia in terms of stroke origin and aphasia subtypes. Conclusions: Risk factors for stroke aphasia are age, cardioembolic origin and superficial MCA stroke. Exceptions to classic clinical-topographic correlations are not rare. Stroke aphasia is associated with relevant disability. Stroke location and associated symptoms strongly influence aphasia subtypes.
Resumo:
Cerebral aneurysms and arteriovenous malformations (AVMs) are well-known sources of intracranial hemorrhage, but can also manifest as other clinical symptoms or remain clinically asymptomatic. The aim was to document and analyze cases of aneurysm or AVM with brain infarction. Survey on 4804 stroke patients treated at the Department of Neurology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland between 1978 and 2000 using the Lausanne Stroke Registry. Twenty patients presented with cerebral aneurysm and 21 with cerebral AVM. Hemorrhage was present in 100% of the AVM and in 75% of the aneurysm patients; in one (5%) of the remaining aneurysm patients, aneurysm and infarction were located in different territories. Infarction associated with Sylvian artery aneurysm was found in three (15%), vertebrobasilar ischemia because of fusiform left vertebral artery aneurysm in one (5%), and dural fistula draining to the distal transversal and left sigmoid sinus associated with a stroke in the territory of the left anterior inferior cerebellar artery in one patient. Ischemic stroke is infrequent, but important, complication in unruptured intracranial aneurysms and AVMs. The early recognition and therapy of these vascular malformations in selected patients can avoid a major neurological deficit or death caused by their rupture.
Resumo:
Background: Inhibition of the c-Jun N-terminal kinase (JNK) pathway by the TAT-coupled peptide XG-102 (formerly D-JNKI1) induces strong neuroprotection in ischemic stroke in rodents. We investigated the effect of JNK inhibition in intracerebral hemorrhage (ICH). Methods: Three hours after induction of ICH by intrastriatal collagenase injection in mice, the animals received an intravenous injection of 100 mu g/kg of XG-102. The neurological outcome was assessed daily and the mice were sacrificed at 6 h, 1, 2 or 5 days after ICH. Results: XG-102 administration significantly improved the neurological outcome at 1 day (p < 0.01). The lesion volume was significantly decreased after 2 days (29 +/- 11 vs. 39 +/- 5 mm(3) in vehicle-treated animals, p < 0.05). There was also a decreased hemispheric swelling (14 +/- 13 vs. 26 +/- 9% in vehicle-treated animals, p < 0.05) correlating with increased aquaporin 4 expression. Conclusions: XG-102 attenuates cerebral edema in ICH and functional impairment at early time points. The beneficial effects observed with XG-102 in ICH, as well as in ischemic stroke, open the possibility to rapidly treat stroke patients before imaging, thereby saving precious time.
Resumo:
Clinically and experimentally, a case for omega-3 polyunsaturated fatty acid (PUFA) cardioprotection in females has not been clearly established. The goal of this study was to investigate whether dietary omega-3 PUFA supplementation could provide ischemic protection in female mice with an underlying genetic predisposition to cardiac hypertrophy. Mature female transgenic mice (TG) with cardiac-specific overexpression of angiotensinogen that develop normotensive cardiac hypertrophy and littermate wild-type (WT) mice were fed a fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4 wk. Myocardial membrane lipids, ex vivo cardiac performance (intraventricular balloon) after global no-flow ischemia and reperfusion (15/30 min), and reperfusion arrhythmia incidence were assessed. FO diet suppressed cardiac growth by 5% and 10% in WT and TG, respectively (P < 0.001). The extent of mechanical recovery [rate-pressure product (RPP) = beats/min x mmHg] of FO-fed WT and TG hearts was similar (50 +/- 7% vs. 45 +/- 12%, 30 min reperfusion), and this was not significantly different from CTR-fed WT or TG. To evaluate whether systemic estrogen was masking a protective effect of the FO diet, the responses of ovariectomized (OVX) WT and TG mice to FO dietary intervention were assessed. The extent of mechanical recovery of FO-fed OVX WT and TG (RPP, 50 +/- 4% vs. 64 +/- 8%) was not enhanced compared with CTR-fed mice (RPP, 60 +/- 11% vs. 80 +/- 8%, P = 0.335). Dietary FO did not suppress the incidence of reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or OVX). Our findings indicate a lack of cardioprotective effect of dietary FO in females, determined by assessment of mechanical and arrhythmic activity postischemia in a murine ex vivo heart model.
Resumo:
Objectives: The AMS 800TM is the current artificial urinary sphincter (AUS) for incontinence due to intrinsic sphincter deficiency. Despite good clinical results, technical failures inherent to the hydraulic mechanism or urethral ischemic injury contribute to revisions up to 60%. We are developing an electronic AUS, called ARTUS to overcome the rigors of AMS. The objective of this study was to evaluate the technical efficacy and tissue tolerance of the ARTUS system in an animal model.Methods: The ARTUS is composed by three parts: the contractile unit, a series of rings and an integrated microprocessor. The contractile unit is made of Nitinol fibers. The rings are placed around the urethra to control the flow of urine by squeezing the urethra. They work in a sequential alternative mode and are controlled by a microprocessor. In the first phase a three-rings device was used while in the second phase a two-rings ARTUS was used. The device was implanted in 14 sheep divided in two groups of six and eight animals for study purpose. The first group aimed at bladder leak point pressure (BLPP) measurement and validation of the animal model; the second group aimed at verifying mid-term tissue tolerance by explants at twelve weeks. General animal tolerance was also evaluated.Results: The ARTUS system implantation was uneventful. When the system was activated, the BLPP was measured at 1.038±0.044 bar (mean±SD). Urethral tissue analysis did not show significant morphological changes. No infection and no sign of discomfort were noted in animals at 12 weeks.Conclusions: The ARTUS proved to be effective in continence achievement in this study. Histological results support our idea that a sequential alternative mode can avoid urethral atrophy and ischemia. Further technical developments are needed to verify long-term outcome and permit human use.
Resumo:
OBJECTIVE: A study was undertaken to develop a score for assessing risk for symptomatic intracranial hemorrhage (sICH) in ischemic stroke patients treated with intravenous (IV) thrombolysis. METHODS: The derivation cohort comprised 974 ischemic stroke patients treated (1995-2008) with IV thrombolysis at the Helsinki University Central Hospital. The predictive value of parameters associated with sICH (European Cooperative Acute Stroke Study II) was evaluated, and we developed our score according to the magnitude of logistic regression coefficients. We calculated absolute risks and likelihood ratios of sICH per increasing score points. The score was validated in 828 patients from 3 Swiss cohorts (Lausanne, Basel, and Geneva). Performance of the score was tested with area under a receiver operating characteristic curve (AUC-ROC). RESULTS: Our SEDAN score (0 to 6 points) comprises baseline blood Sugar (glucose; 8.1-12.0 mmol/l [145-216 mg/dl] = 1; >12.0 mmol/l [>216 mg/dl] = 2), Early infarct signs (yes = 1) and (hyper)Dense cerebral artery sign (yes = 1) on admission computed tomography scan, Age (>75 years = 1), and NIH Stroke Scale on admission (≥10 = 1). Absolute risk for sICH in the derivation cohort was: 1.4%, 2.9%, 8.5%, 12.2%, 21.7%, and 33.3% for 0, 1, 2, 3, 4, and 5 score points, respectively. In the validation cohort, absolute risks were similar (1.0%, 3.5%, 5.1%, 9.2%, 16.9%, and 27.8%, respectively). AUC-ROC was 0.77 (0.71-0.83; p < 0.001). INTERPRETATION: Our SEDAN score reliably assessed risk for sICH in IV thrombolysis-treated patients with anterior- and posterior circulation ischemic stroke, and it can support clinical decision making in high-risk patients. External validation of the score supports its generalization.
Resumo:
Background: The posterior circulation Acute Stroke Prognosis Early CT Score (pc-ASPECTS) and the combined Pons-midbrain score quantify the extent of early ischemic changes in the posterior circulation. We compared the prognostic accuracy of both scores if applied to CT angiography (CTA) source images (CTA-SI) of patients in the Basilar Artery International Cooperation Study (BASICS).Methods: BASICS was a prospective, observational, multi-centre, registry of consecutive patients who presented with acute symptomatic basilar artery occlusion (BAO). Functional outcome was assessed at 1 month. We applied pc-ASPECTS and the combined Pons-midbrain score to CTA-SI by 3-reader-consensus. Readers were blinded to clinical data. We performed multivariable logistic regression analysis, adjusting for thrombolysis, baseline NIHSS score and age, and used the output to derive ROC curves to compare the ability of both scores to discriminate patients with favourable (modified Rankin Scale [mRS] scores 0-3) from patients with unfavourable (mRS scores 4-6) functional outcome.Results: We reviewed CTAs of 158 patients (64% men, mean age 65 _ 15 years, median NIHSS score 25 [0-38], median GCS score 7 [3-15], median onset-to-CTA time 234 minutes [11-7380]). At 1 month, 40 (25%) patients had a favourable outcome, 49 (31%) had an unfavourable outcome (mRS score 4-5) and 69 (44%) were deceased. Both techniques of assessing CTA-SI hypoattenuation in the posterior circulation showed equally good discriminative value in predicting final outcome (C-statistics; area under ROC curve 0.74 versus 0.75, respectively; p_0.37). Pc-ASPECTS dichotomized at _6 versus _6 was an independent predictor of favourable functional outcome (RR _ 2.2; CI95 1.1-4.7; p _ 0.034).Conclusion: Compared to the combined Pons-midbrain score, the pc-ASPECTS score has similar prognostic accuracy to identify patients with a favourable functional outcome in BASICS. Dichotomized pc-ASPECTS (_6 versus _6) is an independent predictor of favourable functional outcome in this population. Author Disclosures: V. Puetz: None. A. Khomenko: None. M.D. Hill: None. I. Dzialowski: None. P. Michel: None. C. Weimar: None. C.A.C. Wijman: None. H. Mattle: None. K. Muir: None. T. Pfefferkorn: None. D. Tanne: None. S. Engelter: None. K. Szabo: None. A. Algra: None. A.M. Demchuk: None. W.J. Schonewille: None.
Resumo:
We investigated the neural basis for spontaneous chemo-stimulated increases in ventilation in awake, healthy humans. Blood oxygen level dependent (BOLD) functional MRI was performed in nine healthy subjects using T2 weighted echo planar imaging. Brain volumes (52 transverse slices, cortex to high spinal cord) were acquired every 3.9 s. The 30 min paradigm consisted of six, 5-min cycles, each cycle comprising 45 s of hypoxic-isocapnia, 45 s of isooxic-hypercapnia and 45 s of hypoxic-hypercapnia, with 55 s of non-stimulatory hyperoxic-isocapnia (control) separating each stimulus period. Ventilation was significantly (p<0.001) increased during hypoxic-isocapnia, isooxic-hypercapnia and hypoxic-hypercapnia (17.0, 13.8, 24.9 L/min respectively) vs. control (8.4 L/min) and was associated with significant (p<0.05, corrected for multiple comparisons) signal increases within a bilateral network that included the basal ganglia, thalamus, red nucleus, cerebellum, parietal cortex, cingulate and superior mid pons. The neuroanatomical structures identified provide evidence for the spontaneous control of breathing to be mediated by higher brain centres, as well as respiratory nuclei in the brainstem.
Resumo:
The goal of this study was to evaluate the diagnostic value of postmortem multi-computed tomography (MDCT) and MDCT-angiography for sudden cardiac deaths related to ischemic heart disease. Twenty three cases were selected based on clinical history and the results of native MDCT, multiphase post-mortem CT-angiography and conventional autopsy were compared. Radiological examination showed calcification of coronary arteries in 78% of the cases, most of which were not detailed at autopsy. MDCT-angiography allowed better visualization of the coronary arteries than MDCT and permitted the evaluation of stenoses and occlusions. Of the 14 cases of coronary thrombosis detected at conventional autopsy, 11 were visible as stop of perfusion with CT-angiography and three were found to be partly perfused. One case had an old thrombosis with collateral circulation. One case had a coronary artery postmortem clot found with MDCT-angiography. Coronary artery calcifications are more easily detected and documented with radiological examination than with conventional autopsy. MDCT is of limited diagnostic value for ischemic heart disease. MDCT-angiography, when correctly interpreted, is a reasonable tool to view the morphology of coronary arteries, rule out significant coronary artery stenoses, identify occlusions and direct sampling for histological examination.
Resumo:
OBJECTIVE: To weight the rod-, cone-, and melanopsin-mediated activation of the retinal ganglion cells, which drive the pupil light reflex by varying the light stimulus wavelength, intensity, and duration. DESIGN: Experimental study. PARTICIPANTS: Forty-three subjects with normal eyes and 3 patients with neuroretinal visual loss. METHODS: A novel stimulus paradigm was developed using either a long wavelength (red) or short wavelength (blue) light given as a continuous Ganzfeld stimulus with stepwise increases over a 2 log-unit range. The pupillary movement before, during, and after the light stimulus was recorded in real time with an infrared illuminated video camera. MAIN OUTCOME MEASURES: The percent pupil contraction of the transient and sustained pupil response to a low- (1 cd/m(2)), medium- (10 cd/m(2)), and high-intensity (100 cd/m(2)) red- and blue-light stimulus was calculated for 1 eye of each subject. From the 43 normal eyes, median and 25th, 75th, 5th, and 95th percentile values were obtained for each stimulus condition. RESULTS: In normal eyes at lower intensities, blue light evoked much greater pupil responses compared with red light when matched for photopic luminance. The transient pupil contraction was generally greater than the sustained contraction, and this disparity was greatest at the lowest light intensity and least apparent with bright (100 cd/m(2)) blue light. A patient with primarily rod dysfunction (nonrecordable scotopic electroretinogram) showed significantly reduced pupil responses to blue light at lower intensities. A patient with achromatopsia and an almost normal visual field showed selective reduction of the pupil response to red-light stimulation. A patient with ganglion cell dysfunction owing to anterior ischemic optic neuropathy demonstrated global loss of pupil responses to red and blue light in the affected eye. CONCLUSIONS: Pupil responses that differ as a function of light intensity and wavelength support the hypothesis that selected stimulus conditions can produce pupil responses that reflect phototransduction primarily mediated by rods, cones, or melanopsin. Use of chromatic pupil responses may be a novel way to diagnose and monitor diseases affecting either the outer or inner retina.
Resumo:
BACKGROUND: Perioperative visual loss (PVL) refers to the loss of vision following surgery performed at distance from the visual pathways. An ischemic optic neuropathy (ION) is the most frequent clinical presentation of PVL, and can be bilateral. PATIENTS AND METHODS: A retrospective chart review of 11 consecutive patients with PVL examined between 2002 and 2007 was undertaken. RESULTS: An ION was found in all 11 cases: 8 were anterior (AION) and 3 were posterior (PION). Visual loss was bilateral in 9 patients. Mean visual acuity (VA) was 0.2 on the Snellen chart (0.74 LogMAR). Most frequently an arcuate/altitudinal visual field defect was present. PVL followed orthopedic (6), spinal (1), cardiac (2) and vascular (2) procedures. The average delay between surgery and visual loss was 32 hours (range: 0-96 hours). Average lowest perioperative hemoglobin level was 75 g/L. Average follow-up time was 14.7 months. VA improved by at least 2 Snellen lines in 5/20 eyes (25 %). CONCLUSIONS: PVL is a rare but dreadful complication of surgery, and is usually associated with severe anemia. Like other causes of ION, there is no specific therapy. Prompt correction of the anemia might decrease the rate of this complication
Resumo:
Peripheral arterial disease (PAD) is a common disease with increasing prevalence, presenting with impaired walking ability affecting patient's quality of life. PAD epidemiology is known, however, mechanisms underlying functional muscle impairment remain unclear. Using a mouse PAD model, aim of this study was to assess muscle adaptive responses during early (1 week) and late (5 weeks) disease stages. Unilateral hindlimb ischemia was induced in ApoE(-/-) mice by iliac artery ligation. Ischemic limb perfusion and oxygenation (Laser Doppler imaging, transcutaneous oxygen pressure assessments) significantly decreased during early and late stage compared to pre-ischemia, however, values were significantly higher during late versus early phase. Number of arterioles and arteriogenesis-linked gene expression increased at later stage. Walking ability, evaluated by forced and voluntary walking tests, remained significantly decreased both at early and late phase without any significant improvement. Muscle glucose uptake ([18F]fluorodeoxyglucose positron emission tomography) significantly increased during early ischemia decreasing at later stage. Gene expression analysis showed significant shift in muscle M1/M2 macrophages and Th1/Th2 T cells balance toward pro-inflammatory phenotype during early ischemia; later, inflammatory state returned to neutrality. Muscular M1/M2 shift inhibition by a statin prevented impaired walking ability in early ischemia. High-energy phosphate metabolism remained unchanged (31-Phosphorus magnetic resonance spectroscopy). Results show that rapid transient muscular inflammation contributes to impaired walking capacity while increased glucose uptake may be a compensatory mechanisms preserving immediate limb viability during early ischemia in a mouse PAD model. With time, increased ischemic limb perfusion and oxygenation assure muscle viability although not sufficiently to improve walking impairment. Subsequent decreased muscle glucose uptake may partly contribute to chronic walking impairment. Early inflammation inhibition and/or late muscle glucose impairment prevention are promising strategies for PAD management.
Resumo:
The c-Jun-N-terminal kinase signaling pathway (JNK) is highly activated during ischemia and plays an important role in apoptosis and inflammation. We have previously demonstrated that D-JNKI1, a specific JNK inhibitor, is strongly neuroprotective in animal models of stroke. We presently evaluated if D-JNKI1 modulates post-ischemic inflammation such as the activation and accumulation of microglial cells. Outbred CD1 mice were subjected to 45 min middle cerebral artery occlusion (MCAo). D-JNKI1 (0.1 mg/kg) or vehicle (saline) was administered intravenously 3 h after MCAo onset. Lesion size at 48 h was significantly reduced, from 28.2+/-8.5 mm(3) (n=7) to 13.9+/-6.2 mm(3) in the treated group (n=6). Activation of the JNK pathway (phosphorylation of c-Jun) was observed in neurons as well as in Isolectin B4 positive microglia. We quantified activated microglia (CD11b) by measuring the average intensity of CD11b labelling (infra-red emission) within the ischemic tissue. No significant difference was found between groups. Cerebral ischemia was modelled in vitro by subjecting rat organotypic hippocampal slice cultures to oxygen (5%) and glucose deprivation for 30 min. In vitro, D-JNKI1 was found predominantly in NeuN positive neurons of the CA1 region and in few Isolectin B4 positive microglia. Furthermore, 48 h after OGD, microglia were activated whereas resting microglia were found in controls and in D-JNKI1-treated slices. Our study shows that D-JNKI1 reduces the infarct volume 48 h after transient MCAo and does not act on the activation and accumulation of microglia at this time point. In contrast, in vitro data show an indirect effect of D-JNKI1 on the modulation of microglial activation.
Preretinal partial pressure of oxygen gradients before and after experimental pars plana vitrectomy.
Resumo:
PURPOSE: To evaluate preretinal partial pressure of oxygen (PO2) gradients before and after experimental pars plana vitrectomy. METHODS: Arteriolar, venous, and intervascular preretinal PO2 gradients were recorded in 7 minipigs during slow withdrawal of oxygen-sensitive microelectrodes (10-μm tip diameter) from the vitreoretinal interface to 2 mm into the vitreous cavity. Recordings were repeated after pars plana vitrectomy and balanced salt solution (BSS) intraocular perfusion. RESULTS: Arteriolar, venous, and intervascular preretinal PO2 at the vitreoretinal interface were 62.3 ± 13.8, 22.5 ± 3.3, and 17.0 ± 7.5 mmHg, respectively, before vitrectomy; 97.7 ± 19.9, 40.0 ± 21.9, and 56.3 ± 28.4 mmHg, respectively, immediately after vitrectomy; and 59.0 ± 27.4, 25.2 ± 3.0, and 21.5 ± 4.5 mmHg, respectively, 2½ hours after interruption of BSS perfusion. PO2 2 mm from the vitreoretinal interface was 28.4 ± 3.6 mmHg before vitrectomy; 151.8 ± 4.5 mmHg immediately after vitrectomy; and 34.8 ± 4.1 mmHg 2½ hours after interruption of BSS perfusion. PO2 gradients were still present after vitrectomy, with the same patterns as before vitrectomy. CONCLUSION: Preretinal PO2 gradients are not eliminated after pars plana vitrectomy. During BSS perfusion, vitreous cavity PO2 is very high. Interruption of BSS perfusion evokes progressive equilibration of vitreous cavity PO2 with concomitant progressive return of preretinal PO2 gradients to their previtrectomy patterns. This indicates that preretinal diffusion of oxygen is not altered after vitrectomy. The beneficial effect of vitrectomy in ischemic retinal diseases or macular edema may be related to other mechanisms, such as increased oxygen convection currents or removal of growth factors and cytokines secreted in the vitreous.