978 resultados para HIGH-VELOCITY
Resumo:
An integrated chemical-biological effects monitoring was performed in 2010 and 2012 in two NW Iberian estuaries under different anthropogenic pressure. One is low impacted and the other is contaminated by metals. The aim was to verify the usefulness of a multibiomarker approach, using Carcinus maenas as bioindicator species, to reflect diminishing environmental contamination and improved health status under abiotic variation. Sampling sites were assessed for metal levels in sediments and C. maenas, water abiotic factors and biomarkers (neurotoxicity, energy metabolism, biotransformation, anti-oxidant defences, oxidative damage). High inter-annual and seasonal abiotic variation was observed. Metal levels in sediments and crab tissues were markedly higher in 2010 than in 2012 in the contaminated estuary. Biomarkers indicated differences between the study sites and seasons and an improvement of effects measured in C. maenas from the polluted estuary in 2012. Integrated Biomarker Response (IBR) index depicted sites with higher stress levels whereas Principal Component Analysis (PCA) showed associations between biomarker responses and environmental variables. The multibiomarker approach and integrated assessments proved to be useful to the early diagnosis of remediation measures in impacted sites.
Resumo:
Cellulose and its derivatives, such as hydroxypropylcellulose (HPC) have been studied for a long time but they are still not well understood particularly in liquid crystalline solutions. These systems can be at the origin of networks with properties similar to liquid crystalline (LC) elastomers. The films produced from LC solutions can be manipulated by the action of moisture allowing for instance the development of a soft motor (Geng et al., 2013) driven by humidity. Cellulose nanocrystals (CNC), which combine cellulose properties with the specific characteristics of nanoscale materials, have been mainly studied for their potential as a reinforcing agent. Suspensions of CNC can also self-order originating a liquid-crystalline chiral nematic phases. Considering the liquid crystalline features that both LC-HPC and CNC can acquire, we prepared LC-HPC/CNC solutions with different CNC contents (1,2 and 5 wt.%). The effect of the CNC into the LC-HPC matrix was determined by coupling rheology and NMR spectroscopy - Rheo-NMR a technique tailored to analyse orientational order in sheared systems. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This clinical trial compared parasitological efficacy, levels of in vivo resistance and side effects of oral chloroquine 25 mg/Kg and 50 mg/Kg in 3 days treatment in Plasmodium falciparum malaria with an extended followed-up of 30 days. The study enroled 58 patients in the 25 mg/Kg group and 66 in the 50 mg/Kg group. All eligible subjects were over 14 years of age and came from Amazon Basin and Central Brazil during the period of August 1989 to April 1991. The cure rate in the 50 mg/Kg group was 89.4% on day 7 and 71.2% on day 14 compared to 44.8% and 24.1% in the 25 mg/Kg group. 74.1% of the patients in the 25 mg/Kg group and 48.4% of the patients in the 50 mg/Kg group had detectable parasitaemia at the day 30. However, there was a decrease of the geometric mean parasite density in both groups specially in the 50 mg/Kg group. There was 24.1% of RIII and 13.8% of RH in the 25 mg/Kg group. Side effects were found to be minimum in both groups. The present data support that there was a high level resistance to chloroquine in both groups, and the high dose regimen only delayed the development of resistance and its administration should not be recommended as first choice in malaria P. falciparum therapy in Brazil.
Resumo:
Gamma radiations measurements were carried out in the vicinity of a coal-fired power plant located in the southwest coastline of Portugal. Two different gamma detectors were used to assess the environmental radiation within a circular area of 20 km centred in the coal plant: a scintillometer (SPP2 NF, Saphymo) and a high purity germanium detector (HPGe, Canberra). Fifty urban and suburban measurements locations were established within the defined area and two measurements campaigns were carried out. The results of the total gamma radiation ranged from 20.83 to 98.33 counts per second (c.p.s.) for both measurement campaigns and outdoor doses rates ranged from 77.65 to 366.51 Gy/h. Natural emitting nuclides from the U-238 and Th-232 decay series were identified as well as the natural emitting nuclide K-40. The radionuclide concentration from the uranium and thorium series determined by gamma spectrometry ranged from 0.93 to 73.68 Bq/kg, while for K-40 the concentration ranged from 84.14 to 904.38 Bq/kg. The obtained results were used primarily to define the variability in measured environmental radiation and to determine the coal plant’s influence in the measured radiation levels. The highest values were measured at two locations near the power plant and at locations between the distance of 6 and 20 km away from the stacks, mainly in the prevailing wind direction. The results showed an increase or at least an influence from the coal-fired plant operations, both qualitatively and quantitatively.
Resumo:
Since long ago cellulosic lyotropic liquid crystals were thought as potential materials to produce fibers competitive with spidersilk or Kevlar, yet the processing of high modulus materials from cellulose-based precursors was hampered by their complex rheological behavior. In this work, by using the Rheo-NMR technique, which combines deuterium NMR with rheology, we investigate the high shear rate regimes that may be of interest to the industrial processing of these materials. Whereas the low shear rate regimes were already investigated by this technique in different works [1-4], the high shear rates range is still lacking a detailed study. This work focuses on the orientational order in the system both under shear and subsequent relaxation process arising after shear cessation through the analysis of deuterium spectra from the deuterated solvent water. At the analyzed shear rates the cholesteric order is suppressed and a flow-aligned nematic is observed which for the higher shear rates develops after certain time periodic perturbations that transiently annihilate the order in the system. During relaxation the flow aligned nematic starts losing order due to the onset of the cholesteric helices leading to a period of very low order where cholesteric helices with different orientations are forming from the aligned nematic, followed in the final stage by an increase in order at long relaxation times corresponding to the development of aligned cholesteric domains. This study sheds light on the complex rheological behavior of chiral nematic cellulose-based systems and opens ways to improve its processing. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Seismic ambient noise tomography is applied to central and southern Mozambique, located in the tip of the East African Rift (EAR). The deployment of MOZART seismic network, with a total of 30 broad-band stations continuously recording for 26 months, allowed us to carry out the first tomographic study of the crust under this region, which until now remained largely unexplored at this scale. From cross-correlations extracted from coherent noise we obtained Rayleigh wave group velocity dispersion curves for the period range 5–40 s. These dispersion relations were inverted to produce group velocity maps, and 1-D shear wave velocity profiles at selected points. High group velocities are observed at all periods on the eastern edge of the Kaapvaal and Zimbabwe cratons, in agreement with the findings of previous studies. Further east, a pronounced slow anomaly is observed in central and southern Mozambique, where the rifting between southern Africa and Antarctica created a passive margin in the Mesozoic, and further rifting is currently happening as a result of the southward propagation of the EAR. In this study, we also addressed the question concerning the nature of the crust (continental versus oceanic) in the Mozambique Coastal Plains (MCP), still in debate. Our data do not support previous suggestions that the MCP are floored by oceanic crust since a shallow Moho could not be detected, and we discuss an alternative explanation for its ocean-like magnetic signature. Our velocity maps suggest that the crystalline basement of the Zimbabwe craton may extend further east well into Mozambique underneath the sediment cover, contrary to what is usually assumed, while further south the Kaapval craton passes into slow rifted crust at the Lebombo monocline as expected. The sharp passage from fast crust to slow crust on the northern part of the study area coincides with the seismically active NNE-SSW Urema rift, while further south the Mazenga graben adopts an N-S direction parallel to the eastern limit of the Kaapvaal craton. We conclude that these two extensional structures herald the southward continuation of the EAR, and infer a structural control of the transition between the two types of crust on the ongoing deformation.
Resumo:
Modular design is crucial to manage large-scale systems and to support the divide-and-conquer development approach. It allows hierarchical representations and, therefore, one can have a system overview, as well as observe component details. Petri nets are suitable to model concurrent systems, but lack on structuring mechanisms to support abstractions and the composition of sub-models, in particular when considering applications to embedded controllers design. In this paper we present a module construct, and an underlying high-level Petri net type, to model embedded controllers. Multiple interfaces can be declared in a module, thus, different instances of the same module can be used in different situations. The interface is a subset of the module nodes, through which the communication with the environment is made. Module places can be annotated with a generic type, overridden with a concrete type at instance level, and constants declared in a module may have a new value in each instance.
Resumo:
A new algorithm for the velocity vector estimation of moving ships using Single Look Complex (SLC) SAR data in strip map acquisition mode is proposed. The algorithm exploits both amplitude and phase information of the Doppler decompressed data spectrum, with the aim to estimate both the azimuth antenna pattern and the backscattering coefficient as function of the look angle. The antenna pattern estimation provides information about the target velocity; the backscattering coefficient can be used for vessel classification. The range velocity is retrieved in the slow time frequency domain by estimating the antenna pattern effects induced by the target motion, while the azimuth velocity is calculated by the estimated range velocity and the ship orientation. Finally, the algorithm is tested on simulated SAR SLC data.
Resumo:
Summary form only given. Bacterial infections and the fight against them have been one of the major concerns of mankind since the dawn of time. During the `golden years' of antibiotic discovery, during the 1940-90s, it was thought that the war against infectious diseases had been won. However currently, due to the drug resistance increase, associated with the inefficiency of discovering new antibiotic classes, infectious diseases are again a major public health concern. A potential alternative to antibiotic treatments may be the antimicrobial photodynamic inactivation (PDI) therapy. To date no indication of antimicrobial PDI resistance development has been reported. However the PDI protocol depends on the bacteria species [1], and in some cases on the bacteria strains, for instance Staphylococcus aureus [2]. Therefore the development of PDI monitoring techniques for diverse bacteria strains is critical in pursuing further understanding of such promising alternative therapy. The present works aims to evaluate Fourier-Transformed-Infra-Red (FT-IR) spectroscopy to monitor the PDI of two model bacteria, a gram-negative (Escherichia coli) and a gram-positive (S. aureus) bacteria. For that a high-throughput FTIR spectroscopic method was implemented as generally described in Scholz et al. [3], using short incubation periods and microliter quantities of the incubation mixture containing the bacteria and the PDI-drug model the known bactericidal tetracationic porphyrin 5,10,15,20-tetrakis (4-N, N, Ntrimethylammoniumphenyl)-porphyrin p-tosylate (TTAP4+). In both bacteria models it was possible to detect, by FTIR-spectroscopy, the drugs effect on the cellular composition either directly on the spectra or on score plots of principal component analysis. Furthermore the technique enabled to infer the effect of PDI on the major cellular biomolecules and metabolic status, for example the turn-over metabolism. In summary bacteria PDI was monitored in an economic, rapid (in minutes- , high-throughput (using microplates with 96 wells) and highly sensitive mode resourcing to FTIR spectroscopy, which could serve has a technological basis for the evaluation of antimicrobial PDI therapies efficiency.
Resumo:
1st European IAHR Congress, 6-4 May, Edinburgh, Scotland
Resumo:
33rd IAHR Congress: Water Engineering for a Sustainable Environment
Resumo:
We agree with Ling-Yun et al. [5] and Zhang and Duan comments [2] about the typing error in equation (9) of the manuscript [8]. The correct formula was initially proposed in [6, 7]. The formula adopted in our algorithms discussed in our papers [1, 3, 4, 8] is, in fact, the following: ...
Resumo:
The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coil cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R-2) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multi-fiber optic probes for multi-bioreactors. In this case, MIR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.
Resumo:
β-d-glucans from basidiomycete strains are powerful immunomodulatory agents in several clinical conditions. Therefore, their assay, purification and characterization are of great interest to understand their structure-function relationship. Hybridoma cell fusion was used to raise monoclonal antibodies (Mabs) against extracellular β-d-glucans (EBGs) from Pleurotus ostreatus. Two of the hybridoma clones (1E6-1E8-B5 and 3E8-3B4) secreting Mabs against EBGs were selected. This hybridoma cell line secreted Mabs of the IgG class which were then purified by hydroxyapatite chromatography to apparent homogeneity on native and SDS-PAGE. Mabs secreted by 1E6-1E8-B5 clone were found to recognize a common epitope on several β-d-glucans from different basidiomycete strains. This Mab exhibited high affinity constant (KA) for β-d-glucans from several mushroom strains in the range of 3.20 × 109 ± 3.32 × 103-1.51 × 1013 ± 3.58 × 107 L/mol. Moreover, they reacted to some heat-treated β-d-glucans in a different mode when compared with the native forms; these data suggest that this Mab binds to a conformational epitope on the β-d-glucan molecule. The epitope-binding studies of Mabs obtained from 1E6-1E8-B5 and 3E8-3B4 revealed that the Mabs bind to the same epitope on some β-d-glucans and to different epitopes in other antigen molecules. Therefore, these Mabs can be used to assay for β-d-glucan from basidiomycete mushrooms. © 2015 Elsevier Ltd. All rights reserved.
Resumo:
Nearly 400 hemodialysis patients treated at 5 different hemodialysis units in Rio de Janeiro were tested for one year for the presence of hepatitis C and B markers. During the same period, samples were also obtained from 35 continuous ambulatory peritoneal dialysis (CAPD) patients and from 242 health care workers. Depending on the hemodialysis unit studied, anti-HCV prevalence rates ranging from 47% to 82% (mean 65%) were detected. CAPD patients showed a lower prevalence of 17%. The prevalence of antibodies against hepatitis C virus (anti-HCV) among health care workers was 2.9%. We observed a hepatitis C attack rate of 11.5% per year in the anti-HCV-negative hemodialysis patient population. An average of 9.4% of the hemodialysis patients were chronic carriers of hepatitis B virus (HBV) (range 1.8% - 20.4%), while 48.9% showed markers of previous HBV infection. The HBV attack rate was 4.5% per year (range 0% - 6%). These results indicate an alarming high prevalence of anti-HCV among hemodialysis patients of this studied region.