991 resultados para Goldoni, Carlo, 1707-1793
Resumo:
Inclui notas explicativas, bibliográficas e bibliografia.
Resumo:
A Monte Carlo simulation method for globular proteins, called extended-scaled-collective-variable (ESCV) Monte Carlo, is proposed. This method combines two Monte Carlo algorithms known as entropy-sampling and scaled-collective-variable algorithms. Entropy-sampling Monte Carlo is able to sample a large configurational space even in a disordered system that has a large number of potential barriers. In contrast, scaled-collective-variable Monte Carlo provides an efficient sampling for a system whose dynamics is highly cooperative. Because a globular protein is a disordered system whose dynamics is characterized by collective motions, a combination of these two algorithms could provide an optimal Monte Carlo simulation for a globular protein. As a test case, we have carried out an ESCV Monte Carlo simulation for a cell adhesive Arg-Gly-Asp-containing peptide, Lys-Arg-Cys-Arg-Gly-Asp-Cys-Met-Asp, and determined the conformational distribution at 300 K. The peptide contains a disulfide bridge between the two cysteine residues. This bond mimics the strong geometrical constraints that result from a protein's globular nature and give rise to highly cooperative dynamics. Computation results show that the ESCV Monte Carlo was not trapped at any local minimum and that the canonical distribution was correctly determined.
Resumo:
We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.
Resumo:
As expectativas da Organização Mundial de Saúde para o ano de 2030 são que o número de mortes por câncer seja de aproximadamente 13,2 milhões, evidenciando a elevada parcela desta doença no problema de saúde mundial. Com relação ao câncer de próstata, de acordo com o Instituto Nacional do Câncer, o número de casos diagnosticados no mundo em 2012 foi de aproximadamente 1,1 milhão, enquanto que no Brasil os dados indicam a incidência de 68 mil novos casos. O tratamento deste tipo de neoplasia pode ser realizado com cirurgia (prostatectomia) ou radioterapia. Dentre a radioterapia, podemos destacar a técnica de braquiterapia, a qual consiste na introdução (implante) de pequenas fontes radioativas (sementes) no interior da próstata, onde será entregue um valor elevado de dose no volume de tratamento e baixa dose nos tecidos ao redor. No Brasil, a classe médica estima uma demanda de aproximadamente 8000 sementes/mês, sendo o custo unitário de cada semente de pelo menos U$ 26,00. A Associação Americana de Físicos na Medicina publicou alguns documentos descrevendo quais parâmetros e análises devem ser realizadas para avaliações da distribuição de dose, como por exemplo, os parâmetros Constante de taxa de dose, Função radial e Função de anisotropia. Estes parâmetros podem ser obtidos através de medidas experimentais da distribuição de dose ou por simulações computacionais. Neste trabalho foram determinados os parâmetros dosimétricos da semente OncoSeed-6711 da empresa Oncura-GEHealthcare e da semente desenvolvida pelo Grupo de Dosimetria de Fontes de Braquiterapia do Centro de Tecnologia das Radiações (CTR IPEN-CNEN/SP) por simulação computacional da distribuição de dose utilizando o código MCNP5, baseado no Método de Monte Carlo. A semente 6711 foi modelada, assim como um sistema dosimétrico constituído por um objeto simulador cúbico de 30x30x30 cm3 preenchido com água. Os valores obtidos da semente 6711 foram comparados com alguns apresentados na literatura, onde o parâmetro Constante de taxa de dose apresentou erro relativo em relação ao valor publicado no TG- 43 de 0,1%, sendo que os outros parâmetros analisados também apresentaram boa concordância com os valores publicados na literatura. Deste modo, pode-se considerar que os parâmetros utilizados nas simulações (espectro, modelagem geométrica e avaliação de resultados) estão compatíveis com outros estudos, sendo estes parâmetros também utilizados nas simulações da semente do IPEN. Considerando as análises de incerteza estatística, os valores obtidos da semente do IPEN são semelhantes aos valores da semente 6711.
Resumo:
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.
Resumo:
In the Monte Carlo simulation of both lattice field theories and of models of statistical mechanics, identities verified by exact mean values, such as Schwinger-Dyson equations, Guerra relations, Callen identities, etc., provide well-known and sensitive tests of thermalization bias as well as checks of pseudo-random-number generators. We point out that they can be further exploited as control variates to reduce statistical errors. The strategy is general, very simple, and almost costless in CPU time. The method is demonstrated in the twodimensional Ising model at criticality, where the CPU gain factor lies between 2 and 4.
Resumo:
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.
Resumo:
A new Monte Carlo algorithm is introduced for the simulation of supercooled liquids and glass formers, and tested in two model glasses. The algorithm thermalizes well below the Mode Coupling temperature and outperforms other optimized Monte Carlo methods.