998 resultados para Genetic purity
Resumo:
Far infrared magnetophotoconductivity performed on high purity GaAs reveals the existence of fine structures in the resonant magnetopolaron regions. The fine structures are attributed to the presence of bound phonons due to multiphonon processes. We demonstrate that the magnetopolaron energy spectrum consists of bound phonon branches and magnetopolaron branches. Our results also indicate that different phonons are bound to a single impurity, and that the bound phonon in Si-doped GaAs is a quasilocalized mode.
Resumo:
An optimization method based on uniform design in conjunction with genetic algorithm is described. According to the proposed method, the uniform design technique was applied to the design of starting experiments, which can reduce the number of experiments compared with traditional simultaneous methods, such as simplex. And genetic algorithm was used in optimization procedure, which can improve the rapidity of optimal procedure. The hierarchical chromatographic response function was modified to evaluate the separation equality of a chromatogram. An iterative procedure was adopted to search for the optimal condition to improve the accuracy of predicted retention and the quality of the chromatogram. The optimization procedure was tested in optimization of the chromatographic separation of 11 alkaloids in reversed-phase ion pair chromatography and satisfactory optimal result was obtained. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Chinese Acad Sci, ISCAS Lab Internet Software Technologies
Resumo:
Nanocrystalline Tm3+-doped La2O3 phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field-emission scanning electron microscopy, photoluminescence, and cathodoluminescence spectra were utilized to characterize the synthesized phosphors. Under the excitation of UV light (234 nm) and low-voltage electron beams (1-3 kV), the Tm3+-doped La2O3 phosphors show the characteristic emissions of Tm3+(D-1(2), (1)G(4)-F-3(4), H-3(6) transitions).
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations. The highest occupied molecular orbital levels of these complexes are raised by the integration of a carbazole unit to the iridium isoquinoline core so that the hole-transporting ability is improved in the resulting complexes relative to those with I-phenylisoquinoline ligands. All of the complexes are highly thermally stable and emit an intense red light at room temperature with relatively short lifetimes that are beneficial for highly efficient organic light-emitting diodes (OLEDs).
Resumo:
A new strategy for preparing ammonium-type ionic liquid (IL) by acid/base neutralization reaction was proposed. The method contributed to preparing hydroxide-based ammonium IL and resulting task specific ionic liquid (TSIL) with high purity using a low-costly and environment-friendly synthetic. route. Halide contamination in the prepared ILs could be markedly decreased than those prepared by well-established anion metathesis method. Moreover, some novel TSILs composed of cations and anions with big steric hindrances could be prepared by this method. Physicochemical properties of the bifunctional TSILs, i.e., density, water content, decomposition temperature, and munal solubility, were also studied in this article.
Resumo:
Nanocrystalline Tm3+-doped LaGaO3 phosphors were prepared through a Pechini-type sol-gel process [M. P. Pechini, U.S. Patent No. 3,330,697 (11 July 1967)]. X-ray diffraction, field emission scanning electron microscopy, photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. Under the excitation of ultraviolet light and low voltage electron beams (0.5-3 kV), the Tm3+-doped LaGaO3 phosphors show the characteristic emissions from the LaGaO3 host lattice and the Tm3+ (D-1(2), (1)G(4)-F-3(4), and H-3(6) transitions), respectively. The blue CL of the Tm3+-doped LaGaO3 phosphors, with a dominant wavelength of 458 nm, had better Commission International I'Eclairage chromaticity coordinates (0.1552, 0.0630) and higher emission intensity than the commercial product (Y2SiO5:Ce3+).