963 resultados para Generation of tsunami,
Resumo:
A suite of climate model experiments indicates that 20th Century increases in ocean heat content and sea-level ( via thermal expansion) were substantially reduced by the 1883 eruption of Krakatoa. The volcanically-induced cooling of the ocean surface is subducted into deeper ocean layers, where it persists for decades. Temporary reductions in ocean heat content associated with the comparable eruptions of El Chichon ( 1982) and Pinatubo ( 1991) were much shorter lived because they occurred relative to a non-stationary background of large, anthropogenically-forced ocean warming. Our results suggest that inclusion of the effects of Krakatoa ( and perhaps even earlier eruptions) is important for reliable simulation of 20th century ocean heat uptake and thermal expansion. Inter-model differences in the oceanic thermal response to Krakatoa are large and arise from differences in external forcing, model physics, and experimental design. Systematic experimentation is required to quantify the relative importance of these factors. The next generation of historical forcing experiments may require more careful treatment of pre-industrial volcanic aerosol loadings.
Resumo:
In this work, compliant actuators are developed by coupling braided structures and polymer gels, able to produce work by controlled gel swelling in the presence of water. A number of aspects related to the engineering of gel actuators were studied, including gel selection, modelling and experimentation of constant force and constant displacement behaviour, and response time. The actuator was intended for use as vibration neutralizer: with this aim, generation of a force of 10 N in a time not exceeding a second was needed. Results were promising in terms of force generation, although response time was still longer than required. In addition, the easiest way to obtain the reversibility of the effect is still under discussion: possible routes for improvement are suggested and will be the object of future work.
Resumo:
We separate and quantify the sources of uncertainty in projections of regional (*2,500 km) precipitation changes for the twenty-first century using the CMIP3 multi-model ensemble, allowing a direct comparison with a similar analysis for regional temperature changes. For decadal means of seasonal mean precipitation, internal variability is the dominant uncertainty for predictions of the first decade everywhere, and for many regions until the third decade ahead. Model uncertainty is generally the dominant source of uncertainty for longer lead times. Scenario uncertainty is found to be small or negligible for all regions and lead times, apart from close to the poles at the end of the century. For the global mean, model uncertainty dominates at all lead times. The signal-to-noise ratio (S/N) of the precipitation projections is highest at the poles but less than 1 almost everywhere else, and is far lower than for temperature projections. In particular, the tropics have the highest S/N for temperature, but the lowest for precipitation. We also estimate a ‘potential S/N’ by assuming that model uncertainty could be reduced to zero, and show that, for regional precipitation, the gains in S/N are fairly modest, especially for predictions of the next few decades. This finding suggests that adaptation decisions will need to be made in the context of high uncertainty concerning regional changes in precipitation. The potential to narrow uncertainty in regional temperature projections is far greater. These conclusions on S/N are for the current generation of models; the real signal may be larger or smaller than the CMIP3 multi-model mean. Also note that the S/N for extreme precipitation, which is more relevant for many climate impacts, may be larger than for the seasonal mean precipitation considered here.
Resumo:
During the Soufrière Hills eruption, vulcanian explosions have generally occurred 1) in episodic cycles; 2) isolated during pauses in extrusion, and 3) after major collapses of the dome. In a different eruptive context, significant vulcanian explosions occurred on 29 July 2008, 3 December 2008, and 3 January 2009. Deposits are pumiceous except for the 3 December event. We reconstructed the dispersal pattern of the deposits and their textural characteristics to evaluate erupted volume and vesicularity of the magma at fragmentation. We discuss the implications of these explosions in terms of eruptive processes and chronology, and the hazards posed by their sudden and often unheralded occurrence. We suggest that overpressurization of the conduit can develop over time-scales of months to weeks by a process of self-sealing of conduit walls and/or the cooling dome by silica polymorphs. This work provides new insights for understanding the generation of hazardous vulcanian explosions at andesitic volcanoes.
Resumo:
Germin is a homopentameric glycoprotein, the synthesis of which coincides with the onset of growth in germinating wheat embryos. There have been detailed studies of germin structure, biosynthesis, homology with other proteins, and of its value as a marker of wheat development. Germin isoforms associated with the apoplast have been speculated to have a role in embryo hydration during maturation and germination. Antigenically related isoforms of germin are present during germination in all of the economically important cereals studied, and the amounts of germin-like proteins and coding elements have been found to undergo conspicuous change when salt-tolerant higher plants are subjected to salt stress. In this report, we describe how circumstantial evidence arising from unrelated studies of barley oxalate oxidase and its coding elements have led to definitive evidence that the germin isoform made during wheat germination is an oxalate oxidase. Establishment of links between oxalate degradation, cereal germination, and salt tolerance has significant implications for a broad range of studies related to development and adaptation in higher plants. Roles for germin in cell wall biochemistry and tissue remodeling are discussed, with special emphasis on the generation of hydrogen peroxide during germin-induced oxidation of oxalate.
Resumo:
The clonal expansion of antigen-specific CD8+ T cells in response to microbial infections is essential for adaptive immunity. Although IL-2 has been considered to be primarily responsible for this process, quantitatively normal expansion occurs in the absence of IL-2 receptor signaling. Here, we show that ligating CD27 on CD8+ T cells that have been stimulated through the T cell receptor causes their expansion in the absence of IL-2 by mediating two distinct cellular processes: enhancing cell cycling and promoting cell survival by maintaining the expression of IL-7 receptor alpha. This pathway for clonal expansion of the CD8+ T cell is not associated with the development of a capacity either for production of IFN-gamma or for cytotoxic T lymphocyte function and, therefore, is uncoupled from differentiation. Furthermore, ligating CD27 increases the threshold concentration at which IL-2 induces IFN-gamma-producing capability by the CD8+ T cell, suggesting that CD27 signaling may suppress effector differentiation. Finally, CD8+ T cells that have been stimulated by the TCR/CD27 pathway maintain their capacity for subsequent expansion and effector differentiation in response to a viral challenge in vivo. Thus, the TCR/CD27 pathway enables the CD8+ T cell to replicate by a process of self-renewal, which may contribute to the continuous generation of new effector CD8+ T cells in persistent viral infections.
Resumo:
This review considers microbial inocula used in in vitro systems from the perspective of their ability to degrade or ferment a particular substrate, rather than the microbial species that it contains. By necessity, this required an examination of bacterial, protozoal and fungal populations of the rumen and hindgut with respect to factors influencing their activity. The potential to manipulate these populations through diet or sampling time are examined, as is inoculum preparation and level. The main alternatives to fresh rumen fluid (i.e., caecal digesta or faeces) are discussed with respect to end-point degradabilities and fermentation dynamics. Although the potential to use rumen contents obtained from donor animals at slaughter offers possibilities, the requirement to store it and its subsequent loss of activity are limitations. Statistical modelling of data, although still requiring a deal of developmental work, may offer an alternative approach. Finally, with respect to the range of in vitro methodologies and equipment employed, it is suggested that a degree of uniformity could be obtained through generation of a set of guidelines relating to the host animal, sampling technique and inoculum preparation. It was considered unlikely that any particular system would be accepted as the 'standard' procedure. However, before any protocol can be adopted, additional data are required (e.g., a method to assess inoculum 'quality' with respect to its fermentative and/or degradative activity), preparation/inoculation techniques need to be refined and a methodology to store inocula without loss of efficacy developed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Although genome sequencing of microbial pathogens has shed light on the evolution of virulence, the drivers of the gain and loss of genes and of pathogenicity islands (gene clusters), which contribute to the emergence of new disease outbreaks, are unclear. Recent experiments with the bean pathogen Pseudomonas syringae pv. phaseolicola illustrate how exposure to resistance mechanisms acts as the driving force for genome reorganization. Here we argue that the antimicrobial conditions generated by host defences can accelerate the generation of genome rearrangements that provide selective advantages to the invading microbe. Similar exposure to environmental stress outside the host could also drive the horizontal gene transfer that has led to the evolution of pathogenicity towards both animals and plants.
Resumo:
Oxidised low density lipoprotein (LDL) may be involved in the pathogenesis of atherosclerosis. We have therefore investigated the mechanisms underlying the antioxidant/pro-oxidant behavior of dehydroascorbate, the oxidation product of ascorbic acid, toward LDL incubated With Cu2+ ions. By monitoring lipid peroxidation through the formation of conjugated dienes and lipid hydroperoxides, we show that the pro-oxidant activity of dehydroascorbate is critically dependent on the presence of lipid hydroperoxides, which accumulate during the early stages of oxidation. Using electron paramagnetic resonance spectroscopy, we show that dehydroascorbate amplifies the generation of alkoxyl radicals during the interaction of copper ions with the model alkyl hydroperoxide, tert-butylhydroperoxide. Under continuous-flow conditions, a prominent doublet signal was detected, which we attribute to both the erythroascorbate and ascorbate free radicals. On this basis, we propose that the pro-oxidant activity of dehydroascorbate toward LDL is due to its known spontaneous interconversion to erythroascorbate and ascorbate, which reduce Cu2+ to Cu+ and thereby promote the decomposition of lipid hydroperoxides. Various mechanisms, including copper chelation and Cu+ oxidation, are suggested to underlie the antioxidant behavior of dehydroascorbate in LDL that is essentially free of lipid hydroperoxides. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We previously described the use of an established reverse genetics system for the generation of recombinant human influenza A viruses from cloned cDNAs. Here, we have assembled a set of plasmids to allow recovery of the avian H5N1 influenza virus A/Turkey/England/50-92/91 entirely from cDNA. This system enables us to introduce mutations or truncations into the cDNAs to create mutant viruses altered specifically in a chosen gene. These mutant viruses can then be used in future pathogenesis studies in chickens and in studies to understand the host range restrictions of avian influenza viruses in humans.
Resumo:
Nested clade phylogeographic analysis (NCPA) is a popular method for reconstructing the demographic history of spatially distributed populations from genetic data. Although some parts of the analysis are automated, there is no unique and widely followed algorithm for doing this in its entirety, beginning with the data, and ending with the inferences drawn from the data. This article describes a method that automates NCPA, thereby providing a framework for replicating analyses in an objective way. To do so, a number of decisions need to be made so that the automated implementation is representative of previous analyses. We review how the NCPA procedure has evolved since its inception and conclude that there is scope for some variability in the manual application of NCPA. We apply the automated software to three published datasets previously analyzed manually and replicate many details of the manual analyses, suggesting that the current algorithm is representative of how a typical user will perform NCPA. We simulate a large number of replicate datasets for geographically distributed, but entirely random-mating, populations. These are then analyzed using the automated NCPA algorithm. Results indicate that NCPA tends to give a high frequency of false positives. In our simulations we observe that 14% of the clades give a conclusive inference that a demographic event has occurred, and that 75% of the datasets have at least one clade that gives such an inference. This is mainly due to the generation of multiple statistics per clade, of which only one is required to be significant to apply the inference key. We survey the inferences that have been made in recent publications and show that the most commonly inferred processes (restricted gene flow with isolation by distance and contiguous range expansion) are those that are commonly inferred in our simulations. However, published datasets typically yield a richer set of inferences with NCPA than obtained in our random-mating simulations, and further testing of NCPA with models of structured populations is necessary to examine its accuracy.
Resumo:
We investigated the ability of a selection of human influenza A viruses, including recent clinical isolates, to induce IFN-beta production in cultured cell lines. In contrast to the well-characterized laboratory strain A/PR/8/34, several, but not all, recent isolates of H3N2 viruses resulted in moderate IFN-beta stimulation. Through the generation of recombinant viruses, we were able to show that this is not due to a loss of the ability of the NS1 genes to suppress IFN-beta induction; indeed, the NS1 genes behaved similarly with respect to their abilities to block dsRNA signaling. Interestingly, replication of A/Sydney/5/97 virus was less Susceptible to pre-treatment with IFN-alpha than the other viruses. In contrast to the universal effect on dsRNA signaling, we noted differences in the effect of NS1 proteins on expression of interferon stimulated genes and also genes induced by a distinct pathway. The majority of NS1 proteins blocked expression From both IFN-dependent and TNF-dependent promoters by an apparent post-transcriptional mechanism. The NS1 gene of A/PR/8/34 NS1 did not confer these blocks. We noted striking differences in the Cellular localization of different influenza A virus NS1 proteins during infection, which might explain differences in biological activity. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 g/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)- containing FcR chain. Conversely, thrombin only activated at high concentrations ( 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2 mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)– containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature. (Circ Res. 2004;94:1598-1605.)
Resumo:
Severe acute respiratory syndrome (SARS) coronavirus (SCoV) spike (S) protein is the major surface antigen of the virus and is responsible for receptor binding and the generation of neutralizing antibody. To investigate SCoV S protein, full-length and individual domains of S protein were expressed on the surface of insect cells and were characterized for cleavability and reactivity with serum samples obtained from patients during the convalescent phase of SARS. S protein could be cleaved by exogenous trypsin but not by coexpressed furin, suggesting that the protein is not normally processed during infection. Reactivity was evident by both flow cytometry and Western blot assays, but the pattern of reactivity varied according to assay and sequence of the antigen. The antibody response to SCoV S protein involves antibodies to both linear and conformational epitopes, with linear epitopes associated with the carboxyl domain and conformational epitopes associated with the amino terminal domain. Recombinant SCoV S protein appears to be a suitable antigen for the development of an efficient and sensitive diagnostic test for SARS, but our data suggest that assay format and choice of S antigen are important considerations.
Resumo:
Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase beta adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase delta/epsilon and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase delta/epsilon is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions. (C) 2003 Elsevier B.V. All rights reserved.