951 resultados para Generalized Derivation
Resumo:
The majority of severe epileptic encephalopathies of early childhood are symptomatic where a clear etiology is apparent. There is a small subgroup, however, where no etiology is found on imaging and metabolic studies, and genetic factors are important. Myoclonic-astatic epilepsy (MAE) and severe myoclonic epilepsy in infancy (SMEI), also known as Dravet syndrome, are epileptic encephalopathies where multiple seizure types begin in the first few years of life associated with developmental slowing. Clinical and molecular genetic studies of the families of probands with MAE and SMEI suggest a genetic basis. MAE was originally identified as part of the genetic epilepsy syndrome generalized epilepsy with febrile seizures plus (GEFS(+)). Recent clinical genetic studies suggest that SMEI forms the most severe end of the spectrum of the GEFS(+). GEF(+) has now been associated with molecular defects in three sodium channel subunit genes and a GABA subunit gene. Molecular defects of these genes have been identified in patients with MAE and SMEI. Interestingly, the molecular defects in MAE have been found in the setting of large GEFS(+) pedigrees, whereas, more severe truncation mutations arising de novo have been identified in patients with SMEI. It is likely that future molecular studies will shed light on the interaction of a number of genes, possibly related to the same or different ion channels, which result in a severe phenotype such as MAE and SMEI. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A model for finely layered visco-elastic rock proposed by us in previous papers is revisited and generalized to include couple stresses. We begin with an outline of the governing equations for the standard continuum case and apply a computational simulation scheme suitable for problems involving very large deformations. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered beam under compression. We analyse folding up to 40% shortening. The standard continuum solution becomes unstable for extreme values of the shear/normal viscosity ratio. The instability is a consequence of the neglect of the bending stiffness/viscosity in the standard continuum model. We suggest considering these effects within the framework of a couple stress theory. Couple stress theories involve second order spatial derivatives of the velocities/displacements in the virtual work principle. To avoid C-1 continuity in the finite element formulation we introduce the spin of the cross sections of the individual layers as an independent variable and enforce equality to the spin of the unit normal vector to the layers (-the director of the layer system-) by means of a penalty method. We illustrate the convergence of the penalty method by means of numerical solutions of simple shears of an infinite layer for increasing values of the penalty parameter. For the shear problem we present solutions assuming that the internal layering is oriented orthogonal to the surfaces of the shear layer initially. For high values of the ratio of the normal-to the shear viscosity the deformation concentrates in thin bands around to the layer surfaces. The effect of couple stresses on the evolution of folds in layered structures is also investigated. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Objective: To describe a new syndrome of X-linked myoclonic epilepsy with generalized spasticity and intellectual disability (XMESID) and identify the gene defect underlying this disorder. Methods: The authors studied a family in which six boys over two generations had intractable seizures using a validated seizure questionnaire, clinical examination, and EEG studies. Previous records and investigations were obtained. Information on seizure disorders was obtained on 271 members of the extended family. Molecular genetic analysis included linkage studies and mutational analysis using a positional candidate gene approach. Results: All six affected boys had myoclonic seizures and TCS; two had infantile spasms, but only one had hypsarrhythmia. EEG studies show diffuse background slowing with slow generalized spike wave activity. All affected boys had moderate to profound intellectual disability. Hyperreflexia was observed in obligate carrier women. A late-onset progressive spastic ataxia in the matriarch raises the possibility of late clinical manifestations in obligate carriers. The disorder was mapped to Xp11.2-22.2 with a maximum lod score of 1.8. As recently reported, a missense mutation (1058C>T/P353L) was identified within the homeodomain of the novel human Aristaless related homeobox gene (ARX). Conclusions: XMESID is a rare X-linked recessive myoclonic epilepsy with spasticity and intellectual disability in boys. Hyperreflexia is found in carrier women. XMESID is associated with a missense mutation in ARX. This disorder is allelic with X-linked infantile spasms (ISSX; MIM 308350) where polyalanine tract expansions are the commonly observed molecular defect. Mutations of ARX are associated with a wide range of phenotypes; functional studies in the future may lend insights to the neurobiology of myoclonic seizures and infantile spasms.
Resumo:
The gamma-aminobutyric acid type A (GABA(A)) receptor mediates fast inhibitory synaptic transmission in the CNS. Dysfunction of the GABA(A) receptor would be expected to cause neuronal hyperexcitability, a phenomenon linked with epileptogenesis. We have investigated the functional consequences of an arginine-to-glutamine mutation at position 43 within the GABA(A) gamma(2)-subunit found in a family with childhood absence epilepsy and febrile seizures. Rapid-application experiments performed on receptors expressed in HEK-293 cells demonstrated that the mutation slows GABA(A) receptor deactivation and increases the rate of desensitization, resulting in an accumulation of desensitized receptors during repeated, short applications. In Xenopus laevis oocytes, two-electrode voltage-clamp analysis of steady-state currents obtained from alpha(1)beta(2)gamma(2) or alpha(1)beta(2)gamma(2)(R43Q) receptors did not reveal any differences in GABA sensitivity. However, differences in the benzodiazepine pharmacology of mutant receptors were apparent. Mutant receptors expressed in oocytes displayed reduced sensitivity to diazepam and flunitrazepam but not the imiclazopyricline zolpidem. These results provide evidence of impaired GABA(A) receptor function that could decrease the efficacy of transmission at inhibitory synapses, possibly generating a hyperexcitable neuronal state in thalamocortical networks of epileptic patients possessing the mutant subunit.
Resumo:
Although several genes for idiopathic epilepsies from families with simple Mendelian inheritance have been found, genes for the common idiopathic generalized epilepsies, where inheritance is complex, presently are elusive. We studied a large family with epilepsy where the two main phenotypes were childhood absence epilepsy (CAE) and febrile seizures (FS), which offered a special opportunity to identify epilepsy genes. A total of 35 family members had seizures over four generations. The phenotypes comprised typical CAE (eight individuals); FS alone (15), febrile seizures plus (FS+) (three); myoclonic astatic epilepsy (two); generalized epilepsy with tonic-clonic seizures alone (one); partial epilepsy (one); and unclassified epilepsy despite evaluation (two). In three remaining individuals, no information was available. FS were inherited in an autosomal dominant fashion with 75% penetrance. The inheritance of CAE in this family was not simple Mendelian, but suggestive of complex inheritance with the involvement of at least two genes. A GABA(A) receptor gamma2 subunit gene mutation on chromosome 5 segregated with FS, FS+ and CAE, and also occurred in individuals with the other phenotypes. The clinical and molecular data suggest that the GABA(A) receptor subunit mutation alone can account for the FS phenotype. An interaction of this gene with another gene or genes is required for the CAE phenotype in this family. Linkage analysis for a putative second gene contributing to the CAE phenotype suggested possible loci on chromosomes 10, 13, 14 and 15. Examination of these loci in other absence pedigrees is warranted.
Resumo:
[1] We attempt to generate new solutions for the moisture content form of the one-dimensional Richards' [1931] equation using the Lisle [1992] equivalence mapping. This mapping is used as no more general set of transformations exists for mapping the one-dimensional Richards' equation into itself. Starting from a given solution, the mapping has the potential to generate an infinite number of new solutions for a series of nonlinear diffusivity and hydraulic conductivity functions. We first seek new analytical solutions satisfying Richards' equation subject to a constant flux surface boundary condition for a semi-infinite dry soil, starting with the Burgers model. The first iteration produces an existing solution, while subsequent iterations are shown to endlessly reproduce this same solution. Next, we briefly consider the problem of redistribution in a finite-length soil. In this case, Lisle's equivalence mapping is generalized to account for arbitrary initial conditions. As was the case for infiltration, however, it is found that new analytical solutions are not generated using the equivalence mapping, although existing solutions are recovered.