994 resultados para Gaucelm Faidit, fl. 1156-1209.
Resumo:
Progress in microbiology has always been driven by technological advances, ever since Antonie van Leeuwenhoek discovered bacteria by making an improved compound microscope. However, until very recently we have not been able to identify microbes and record their mostly invisible activities, such as nutrient consumption or toxin production on the level of the single cell, not even in the laboratory. This is now changing with the rapid rise of exciting new technologies for single-cell microbiology (1, 2), which enable microbiologists to do what plant and animal ecologists have been doing for a long time: observe who does what, when, where, and next to whom. Single cells taken from the environment can be identified and even their genomes sequenced. Ex situ, their size, elemental, and biochemical composition, as well as other characteristics can be measured with high-throughput and cells sorted accordingly. Even better, individual microbes can be observed in situ with a range of novel microscopic and spectroscopic methods, enabling localization, identification, or functional characterization of cells in a natural sample, combined with detecting uptake of labeled compounds. Alternatively, they can be placed into fabricated microfluidic environments, where they can be positioned, exposed to stimuli, monitored, and their interactions controlled “in microfluido.” By introducing genetically engineered reporter cells into a fabricated landscape or a microcosm taken from nature, their reproductive success or activity can be followed, or their sensing of their local environment recorded.
Resumo:
In the frame of the European Project on Ocean Acidification (EPOCA), the response of an Arctic pelagic community (<3 mm) to a gradient of seawater pCO(2) was investigated. For this purpose 9 large-scale in situ mesocosms were deployed in Kongsfjorden, Svalbard (78 degrees 56.2' N, 11 degrees 53.6' E), in 2010. The present study investigates effects on the communities of particle-attached (PA; >3 mu m) and free-living (FL; <3 mu m > 0.2 mu m) bacteria by Automated Ribosomal Intergenic Spacer Analysis (ARISA) in 6 of the mesocosms, ranging from 185 to 1050 mu atm initial pCO(2), and the surrounding fjord. ARISA was able to resolve, on average, 27 bacterial band classes per sample and allowed for a detailed investigation of the explicit richness and diversity. Both, the PA and the FL bacterioplankton community exhibited a strong temporal development, which was driven mainly by temperature and phytoplankton development. In response to the breakdown of a picophytoplankton bloom, numbers of ARISA band classes in the PA community were reduced at low and medium CO2 (similar to 185-685 mu atm) by about 25 %, while they were more or less stable at high CO2 (similar to 820-1050 mu atm). We hypothesise that enhanced viral lysis and enhanced availability of organic substrates at high CO2 resulted in a more diverse PA bacterial community in the post-bloom phase. Despite lower cell numbers and extracellular enzyme activities in the post-bloom phase, bacterial protein production was enhanced in high CO2 mesocosms, suggesting a positive effect of community richness on this function and on carbon cycling by bacteria.
Resumo:
Information on 12 exotic plants of diverse interest for the Galician flora are presented. All of them were collected in Ribeira council (SW of the A Coruña province). The total includes 8 novelties at a regional level (Aeonium haworthii, Aloe mitriformis, Brugmansia × candida, Nephrolepis cordifolia, Osteospermum ecklonis, Pelargonium capitatum, Sedum mexicanum, Sparaxis tricolor), and 2 provincial novelties. In addition, information on two taxa hardly mentioned in the literature on Galician vascular flora is also included. All the cited specimens are deposited at the SANT Herbarium.
Resumo:
Sandy shores are known to be extreme ecosystems where the vegetation has evolved many morphological and physiological adaptations for its survival. With the aim of identify possible relationships between the vegetation´s functional diversity with abiotic factors and its corresponding quantification, we collected data on the abundance and richness of the sandy coast vegetation complex in Grande, Anclitas and Caguamas keys. Its flora is largely characterized by the dominance of hemicryptophytes and chamaephytes plants with nanophyllous leaves and displaying dispersal syndromes such as zoochory and anemochory. However, the functional groups´ richness, in the present study, varies from one key to another. Functional diversity is similar between the wet and dry seasons, and its spatial variation is influenced by the interplay of the set of abiotic factors herein studied.
Resumo:
As a continuation of previous research on the naturalization of non-native vascular plants in the Iberian Peninsula new chorological data are presented for 16 xenophytes recorded between 2010 and 2014, mostly in the provinces of Huelva and Barcelona (Spain) and in the Algarve and Estremadura (Portugal). For each taxon details about distribution, habitats occupied, previous records, degree of naturalization, etc. are provided. Lachenalia bulbifera and Cyperus albostriatus are probably reported for the first time in the wild in Europe, as are Gamochaeta filaginea, and Dysphania anthelmintica and Oenothera lindheimeri for Portugal and Spain respectively. Cosmos bipinnatus is cited as a novelty for the Algarve (Portugal). Newly reported or confirmed for the province of Huelva are: Amaranthus hypochondriacus, Epilobium brachycarpum, Nephrolepis cordifolia, Ficus microcarpa, Tamarix parviflora and Tamarix ramosissima, while Atriplex semibaccata, Chloris truncata, and Elymus elongatus subsp. ponticus are new for Barcelona. Finally, Passiflora caerulea is a novelty for both Barcelona and Huelva provinces.