950 resultados para GPS active networks
Resumo:
This research provides information for providing the required seismic mitigation in building structures through the use of semi active and passive dampers. The Magneto-Rheological (MR) semi-active damper model was developed using control algorithms and integrated into seismically excited structures as a time domain function. Linear and nonlinear structure models are evaluated in real time scenarios. Research information can be used for the design and construction of earthquake safe buildings with optimally employed MR dampers and MR-passive damper combinations.
Resumo:
Web-based technology is particularly well-suited to promoting active student involvement in the processes of learning. All students enrolled in a first-year educational psychology unit were required to complete ten weekly online quizzes, ten weekly student-generated questions and ten weekly student answers to those questions. Results of an online survey of participating students strongly support the viability and perceived benefits of such an instructional approach. Although students reported that the 30 assessments were useful and reasonable, the most common theme to emerge from the professional reflections of participating lecturers was that the marking of questions and answers was unmanageable.
Resumo:
There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.
Resumo:
The time of the large sequencing projects has enabled unprecedented possibilities of investigating more complex aspects of living organisms. Among the high-throughput technologies based on the genomic sequences, the DNA microarrays are widely used for many purposes, including the measurement of the relative quantity of the messenger RNAs. However, the reliability of microarrays has been strongly doubted as robust analysis of the complex microarray output data has been developed only after the technology had already been spread in the community. An objective of this study consisted of increasing the performance of microarrays, and was measured by the successful validation of the results by independent techniques. To this end, emphasis has been given to the possibility of selecting candidate genes with remarkable biological significance within specific experimental design. Along with literature evidence, the re-annotation of the probes and model-based normalization algorithms were found to be beneficial when analyzing Affymetrix GeneChip data. Typically, the analysis of microarrays aims at selecting genes whose expression is significantly different in different conditions followed by grouping them in functional categories, enabling a biological interpretation of the results. Another approach investigates the global differences in the expression of functionally related groups of genes. Here, this technique has been effective in discovering patterns related to temporal changes during infection of human cells. Another aspect explored in this thesis is related to the possibility of combining independent gene expression data for creating a catalog of genes that are selectively expressed in healthy human tissues. Not all the genes present in human cells are active; some involved in basic activities (named housekeeping genes) are expressed ubiquitously. Other genes (named tissue-selective genes) provide more specific functions and they are expressed preferably in certain cell types or tissues. Defining the tissue-selective genes is also important as these genes can cause disease with phenotype in the tissues where they are expressed. The hypothesis that gene expression could be used as a measure of the relatedness of the tissues has been also proved. Microarray experiments provide long lists of candidate genes that are often difficult to interpret and prioritize. Extending the power of microarray results is possible by inferring the relationships of genes under certain conditions. Gene transcription is constantly regulated by the coordinated binding of proteins, named transcription factors, to specific portions of the its promoter sequence. In this study, the analysis of promoters from groups of candidate genes has been utilized for predicting gene networks and highlighting modules of transcription factors playing a central role in the regulation of their transcription. Specific modules have been found regulating the expression of genes selectively expressed in the hippocampus, an area of the brain having a central role in the Major Depression Disorder. Similarly, gene networks derived from microarray results have elucidated aspects of the development of the mesencephalon, another region of the brain involved in Parkinson Disease.