996 resultados para GAP characterization
Resumo:
The firing characteristics of the simple triggered vacuum gap (TVG) using lead zirconate titanate as dielectric material in the triggered gap are described. This TVG has a long life of about 2000 firings without appreciable deterioration of the electrical properties for main discharge currents upto 3 kA and is much superior to these made with Supramica (Mycalex Corporation of America) and silicon carbide as used in our earlier investigations. The effects of the variation of trigger voltage, trigger curcit, trigger pulse duration, trigger pulse energy, main gap voltage, main gap separation and main circuit energy on the firing characteristics have been studied. Trigger resistance progressively decreases with the number of firings of the trigger gap and as well as of the main gap. This decrease in the trigger resistance is more pronounced for main discharge currents exceeding 10 kA. The minimum trigger current required for reliable firing decreases with increase of trigger voltage upto a threshold value of 1.2 kV and there-onwards saturates at 3.0 A. This value is less than that obtained with Supramica as dielectric material. One hundred percent firing probability of the TVG at main gap voltages as low as 50 V is possible and this low voltage breakdown of the main gap appears to be similar to the breakdown at low pressures between moving plasma by other workers. and the cold electrodes immersed in it, as reported.
Resumo:
The time delay to the firing of a triggered vacuum gap (t.v.g.) containing barium titanate in the trigger gap is investigated as a function of the main gap voltage, main gap length, trigger pulse duration, trigger current and trigger voltage. The time delay decreases steadily with increasing trigger current and trigger voltage until it reaches saturation. The effect of varying the main gap length and voltage on the time delay is not strong. Before `conditioning�¿ the t.v.g. two groups of time delays, long (>100�¿s) and short (<10�¿s), are simultaneously observed when a large number of trials are conducted. After conditioning, only the group of short time delays are present. This is attributed to the marked reduction of the resistance of the trigger gap across the surface of the solid dielectric resulting directly from the conditioning effect.
Resumo:
Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (m beta 1, m beta 1'beta 2, m beta 1-beta 5, m beta 1-beta 6 and m beta 4-beta 5) by transplanting beta 1, beta 1'beta 2, beta 1-beta 5, beta 1-beta 6 and beta 4-beta 5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, m beta 1'beta 2(ESWR) SSB was generated by mutating the MtuSSB specific `PRIY' sequence in the beta 2 strand of m beta 1'beta 2 SSB to EcoSSB specific `ESWR' sequence. Biochemical characterization revealed that except for m beta 1 SSB, all chimeras and a control construct lacking the C-terminal domain (Delta C SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, m beta 1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that m beta 1-beta 6, MtuSSB, m beta 1'beta 2 and m beta 1-beta 5 SSBs complemented E. coli Delta ssb in a dose dependent manner. Complementation by the m beta 1-beta 5 SSB was poor. In contrast, m beta 1'beta 2(ESWR) SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.
Resumo:
High-quality self-assembled V(2)O(5) nanofiber-bundles (NBs) are synthesized by a simple and direct hydrothermal method using a vanadium(V) hydroxylamido complex as a vanadium source in the presence of HNO(3). The possible reaction pathway for the formation of V(2)O(5) NBs is discussed and demonstrated that HNO(3) functions both as an oxidizing and as an acidification agent. V(2)O(5) NBs are single-crystals of an orthorhombic phase that have grown along the [010] direction. A bundle is made of indefinite numbers of homogeneous V(2)O(5) nanofibers where nanofibers have lengths up to several micrometres and widths ranging between 20 and 50 nm. As-prepared V(2)O(5) NBs display a high electrochemical performance in a non-aqueous electrolyte as a cathode material for lithium ion batteries. Field emission properties are also investigated which shows that a low turn-on field of similar to 1.84 V mu m(-1) is required to draw the emission current density of 10 mu Lambda cm(-2).
Resumo:
A major myonecrotic zinc containing metalloprotease `malabarin' with thrombin like activity was purified by the combination of gel permeation and anion exchange chromatography from T. malabaricus snake venom. MALDI-TOF analysis of malabarin indicated a molecular mass of 45.76 kDa and its N-terminal sequence was found to be Ile-Ile-Leu-Pro(Leu)-Ile-Gly-Val-Ile-Leu(Glu)-Thr-Thr. Atomic absorption spectral analysis of malabarin raveled the association of zinc metal ion. Malabarin is not lethal when injected i.p. or i.m. but causes extensive hemorrhage and degradation of muscle tissue within 24 hours. Sections of muscle tissue under light microscope revealed hemorrhage and congestion of blood vessel during initial stage followed by extensive muscle fiber necrosis with elevated levels of serum creatine kinase and lactate dehydrogenase activity. Malabarin also exhibited strong procoagulant action and its procoagulant action is due to thrombin like activity; it hydrolyzes fibrinogen to form fibrin clot. The enzyme preferentially hydrolyzes A alpha followed by B beta subunits of fibrinogen from the N-terminal region and the released products were identified as fibrinopeptide A and fibrinopeptide B by MALDI. The myonecrotic, fibrinogenolytic and subsequent procoagulant activities of malabarin was neutralized by specific metalloprotease inhibitors such as EDTA, EGTA and 1, 10-phenanthroline but not by PMSF a specific serine protease inhibitor. Since there is no antivenom available to neutralize local toxicity caused by T. malabaricus snakebite, EDTA chelation therapy may have more clinical relevance over conventional treatment.
ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism
Resumo:
A highly homogeneous ZnO/Ag nanohybrid has been synthesized by a novel route, employing chitosan as mediator by purely electrostatic interaction. By employing various techniques such as powder XRD, UV-visible, IR spectroscopy and electron (SEM, TEM) microscopy, the formation of the nanohybrid has been established. The synergistic antibacterial effect of ZnO/Ag nanohybrid on Gram-positive and Gram-negative bacteria is found to be more effective, compared to the individual components (ZnO and Ag). Cytotoxicity experiments are carried out and the results are correlated to the solubility of the nanohybrid. A possible mechanism has been proposed for the antibacterial activity of ZnO/Ag nanohybrid, based on TEM studies on bacteria, carried out by employing the microtome technique and by EPR measurements on the hybrid.
Resumo:
A capillary-enforced template-based method has been applied to fabricate Pb(0.76)Ca(0.24)TiO(3) (PCT24) nanotubes via filling PCT24 precursor solution, prepared by modified sol-gel method, into nanochannels of anodic aluminum oxide templates. The morphology and structure of as-prepared PCT24 were examined by scanning electron microscopy, transmission electron microscopy (TEM) and X-ray diffraction techniques. The obtained PCT24 nanotubes with diameter of similar to 200 nm and wall thickness of similar to 20 nm exhibited a tetragonal perovskite structure. High resolution TEM (HRTEM) analysis confirmed that as-obtained PCT24 nanotubes made up of nanoparticles (5-8 nm) which were randomly aligned in the nanotubes. Formation of some solid crystalline PCT24 nanorods, Y-junctions and multi-branches were observed. Interconnections in the pores of template are responsible for the growth of Y-junctions and multi-branches. The possible formation mechanism of PCT24 nanotubes/nanorods was discussed. Ferroelectric hysteresis loops of PCT24 nanotube arrays were measured, showing a room temperature ferroelectric characteristic of as-prepared PCT24 nanotubes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper, the synthesis and characterization of some imidazole-based gold-selenolates are described. This study indicates that the nature of selenolate plays an important role in ligand exchange reactions in gold(I) selenolates. Furthermore, the reactivity of imidazole-based gold(I) selenolates toward nucleophiles such as selenols and phosphines is strikingly different from that of the N,N-dimethylaminobenzylamine-based gold(I) complexes. The presence of Se ... N non-bonded interactions in N,N-dimethylaminobenzylamine-based gold(I) complexes modulates the reactivity of Au(I) centre towards incoming nucleophiles.
Resumo:
We report here the electrical and magnetic properties of Al70Pd30−xMnx quasicrystals (x=9 and 11), from resistivity and point contact spectroscopy measurements. Electrical resistivity shows a resistivity maximum for both of these compositions. The positive TCR at lower temperature is attributed to spin–orbit scattering. For x=11, we observe an upturn in the resistivity below 20 K, which follows a lnT dependence indicating Kondo-like behaviour. In the point contact spectroscopy studies we observe two regimes showing a V2 dependence at low bias voltages (for V<10 meV) crossing over to the V0.5 dependence at higher voltages. This is attributed to the signature of a pseudo-gap in the density of states at zero bias. We suggest that this V2 dependence can also arise due to magnetic scattering effects, which are signatures of the Kondo-like behaviour.
Resumo:
We develop a framework for understanding the difference between strong and fragile behavior in the dynamics of glass-forming liquids from the properties of the potential energy landscape. Our approach is based on a master equation description of the activated jump dynamics among the local minima of the potential energy (the so-called inherent structures) that characterize the potential energy landscape of the system. We study the dynamics of a small atomic cluster using this description as well as molecular dynamics simulations and demonstrate the usefulness of our approach for this system. Many of the remarkable features of the complex dynamics of glassy systems emerge from the activated dynamics in the potential energy landscape of the atomic cluster. The dynamics of the system exhibits typical characteristics of a strong supercooled liquid when the system is allowed to explore the full configuration space. This behavior arises because the dynamics is dominated by a few lowest-lying minima of the potential energy and the potential energy barriers between these minima. When the system is constrained to explore only a limited region of the potential energy landscape that excludes the basins of attraction of a few lowest-lying minima, the dynamics is found to exhibit the characteristics of a fragile liquid.