993 resultados para Functional Adaptation
Resumo:
Six gases (N((CH3)3), NH2OH, CF3COOH, HCl, NO2, O3) were selected to probe the surface of seven combustion aerosol (amorphous carbon, flame soot) and three types of TiO2 nanoparticles using heterogeneous, that is gas-surface reactions. The gas uptake to saturation of the probes was measured under molecular flow conditions in a Knudsen flow reactor and expressed as a density of surface functional groups on a particular aerosol, namely acidic (carboxylic) and basic (conjugated oxides such as pyrones, N-heterocycles) sites, carbonyl (R1-C(O)-R2) and oxidizable (olefinic, -OH) groups. The limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas. With few exceptions most investigated aerosol samples interacted with all probe gases which points to the coexistence of different functional groups on the same aerosol surface such as acidic and basic groups. Generally, the carbonaceous particles displayed significant differences in surface group density: Printex 60 amorphous carbon had the lowest density of surface functional groups throughout, whereas Diesel soot recovered from a Diesel particulate filter had the largest. The presence of basic oxides on carbonaceous aerosol particles was inferred from the ratio of uptakes of CF3COOH and HCl owing to the larger stability of the acetate compared to the chloride counterion in the resulting pyrylium salt. Both soots generated from a rich and a lean hexane diffusion flame had a large density of oxidizable groups similar to amorphous carbon FS 101. TiO2 15 had the lowest density of functional groups among the three studied TiO2 nanoparticles for all probe gases despite the smallest size of its primary particles. The used technique enabled the measurement of the uptake probability of the probe gases on the various supported aerosol samples. The initial uptake probability, g0, of the probe gas onto the supported nanoparticles differed significantly among the various investigated aerosol samples but was roughly correlated with the density of surface groups, as expected. [Authors]
Resumo:
Background: Language processing abnormalities and executive difficulties are hallmark features of schizophrenia. The objective of this study is to assess the blood oxygenation level-dependent (BOLD) response at two different stages of the illness (i.e. comparison between adolescents and adults with schizophrenic symptoms) during a fluency task.Methods: BOLD responses during a covert verbal fluency task were compared between 11 psychotic adolescents with schizophrenic symptoms (mean age 16,9 years) and 14 adults with schizophrenia (mean age 33,4 years). fMRI data were analyzed with standard routine of spm5.Results: First, expected activation's network was found for both groups, separately. Secondly, adolescents showed greater activation in left rolandic opercule (BA 48), left angular (BA 39) and right hippocampus compared to adults. Thirdly, adults demonstrated greater activation in presupplementary motor area (BA 6) and in precentral area (BA 4) compared to adolescents.Conclusions: The adolescents seemed to recruit a verbal network (Broca and Wernicke) and memory abilities to perform a fluency task. In contrast, adults seemed to recruit more executive function abilities to perform a similar task. Despite the evolution of schizophrenia, which is known to have a deleterious influence on the prefrontal cortex development, adult patients seemed to be able to recruit such areas to perform a verbal fluency / executive function task.
Resumo:
Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.
Resumo:
The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.
Resumo:
Genomic islands (GEIs) are large DNA segments, present in most bacterial genomes, that are most likely acquired via horizontal gene transfer. Here, we study the self-transfer system of the integrative and conjugative element ICEclc of Pseudomonas knackmussii B13, which stands model for a larger group of ICE/GEI with syntenic core gene organization. Functional screening revealed that unlike conjugative plasmids and other ICEs ICEclc carries two separate origins of transfer, with different sequence context but containing a similar repeat motif. Conjugation experiments with GFP-labelled ICEclc variants showed that both oriTs are used for transfer and with indistinguishable efficiencies, but that having two oriTs results in an estimated fourfold increase of ICEclc transfer rates in a population compared with having a single oriT. A gene for a relaxase essential for ICEclc transfer was also identified, but in vivo strand exchange assays suggested that the relaxase processes both oriTs in a different manner. This unique dual origin of transfer system might have provided an evolutionary advantage for distribution of ICE, a hypothesis that is supported by the fact that both oriT regions are conserved in several GEIs related to ICEclc.
Resumo:
T cells expressing T cell receptor (TCR) complexes that lack CD3 delta, either due to deletion of the CD3 delta gene, or by replacement of the connecting peptide of the TCR alpha chain, exhibit severely impaired positive selection and TCR-mediated activation of CD8 single-positive T cells. Because the same defects have been observed in mice expressing no CD8 beta or tailless CD8 beta, we examined whether CD3 delta serves to couple TCR.CD3 with CD8. To this end we used T cell hybridomas and transgenic mice expressing the T1 TCR, which recognizes a photoreactive derivative of the PbCS 252-260 peptide in the context of H-2K(d). We report that, in thymocytes and hybridomas expressing the T1 TCR.CD3 complex, CD8 alpha beta associates with the TCR. This association was not observed on T1 hybridomas expressing only CD8 alpha alpha or a CD3 delta(-) variant of the T1 TCR. CD3 delta was selectively co-immunoprecipitated with anti-CD8 antibodies, indicating an avid association of CD8 with CD3 delta. Because CD8 alpha beta is a raft constituent, due to this association a fraction of TCR.CD3 is raft-associated. Cross-linking of these TCR-CD8 adducts results in extensive TCR aggregate formation and intracellular calcium mobilization. Thus, CD3 delta couples TCR.CD3 with raft-associated CD8, which is required for effective activation and positive selection of CD8(+) T cells.
Resumo:
Infections by opportunistic fungi have traditionally been viewed as the gross result of a pathogenic automatism, which makes a weakened host more vulnerable to microbial insults. However, fungal sensing of a host's immune environment might render this process more elaborate than previously appreciated. Here we show that interleukin (IL)-17A binds fungal cells, thus tackling both sides of the host-pathogen interaction in experimental settings of host colonization and/or chronic infection. Global transcriptional profiling reveals that IL-17A induces artificial nutrient starvation conditions in Candida albicans, resulting in a downregulation of the target of rapamycin signalling pathway and in an increase in autophagic responses and intracellular cAMP. The augmented adhesion and filamentous growth, also observed with Aspergillus fumigatus, eventually translates into enhanced biofilm formation and resistance to local antifungal defenses. This might exemplify a mechanism whereby fungi have evolved a means of sensing host immunity to ensure their own persistence in an immunologically dynamic environment.
Resumo:
Hospitalization in older patients is frequently associated with functional decline. Hospital factors and inadapted process of care are factors leading to this decline. Acute care units specifically developed for older patients can prevent functional decline. These units usually include a comprehensive geriatric evaluation, an interdisciplinary meeting, protocols for the treatment of geriatric syndromes and specific teaching for the care team. Globally, patients' cares are organized to preserve and improve functional performances. This article presents a pilot unit inspired by this model.
Resumo:
The need of a better adaptation of crops to drought is an issue of increasing urgency. However, enhancing the tolerance of maize has, therefore, proved to be somewhat elusive in terms of plant breeding. In that context, proper phenotyping remains as one of the main factors limiting breeding advance. Topics covered by this review include the conceptual framework for identifying secondary traits associated with yield response to drought and how to measure these secondary traits in practice.
Resumo:
The malic enzyme (ME) gene is a target for both thyroid hormone receptors and peroxisome proliferator-activated receptors (PPAR). Within the ME promoter, two direct repeat (DR)-1-like elements, MEp and MEd, have been identified as putative PPAR response elements (PPRE). We demonstrate that only MEp and not MEd is able to bind PPAR/retinoid X receptor (RXR) heterodimers and mediate peroxisome proliferator signaling. Taking advantage of the close sequence resemblance of MEp and MEd, we have identified crucial determinants of a PPRE. Using reciprocal mutation analyses of these two elements, we show the preference for adenine as the spacing nucleotide between the two half-sites of the PPRE and demonstrate the importance of the two first bases flanking the core DR1 in 5'. This latter feature of the PPRE lead us to consider the polarity of the PPAR/RXR heterodimer bound to its cognate element. We demonstrate that, in contrast to the polarity of RXR/TR and RXR/RAR bound to DR4 and DR5 elements respectively, PPAR binds to the 5' extended half-site of the response element, while RXR occupies the 3' half-site. Consistent with this polarity is our finding that formation and binding of the PPAR/RXR heterodimer requires an intact hinge T region in RXR while its integrity is not required for binding of the RXR/TR heterodimer to a DR4.