970 resultados para Fracture internal fixation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the load at which FRPs debond from concrete beams using global-energy-balance-based fracture mechanics concepts, the single most important parameter is the fracture energy of the concrete-FRP interface, which is easy to define but difficult to determine. Debonding propagates in the narrow zone of concrete, between the FRP and the (tension) steel reinforcement bars in the beam, and the presence of nearby steel bars prevents the fracture process zone, which in concrete is normally extensive, from developing fully. The paper presents a detailed discussion of the mechanism of the FRP debonding, and shows that the initiation of debonding can be regarded as a Mode I (tensile) fracture in concrete, despite being loaded primarily in shear. It is shown that the incorporation of this fracture energy in the debonding model developed by the authors, details of which are presented elsewhere, gives predictions that match the test results reported in the literature. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture behavior of thin films of bitumen in double cantilever beam (DCB) specimens was investigated over a wide range of temperature and loading rate conditions using finite-element analysis. The model includes a phenomenological model for the mechanical behavior of bitumen, implemented into a special-purpose finite-element user material subroutine, combined with a cohesive zone model (CZM) for simulating the fracture process. The finite-element model is validated against experimental results from laboratory tests of DCB specimens by comparing measured and predicted load-line deflection histories and fracture energy release rates. Computer simulation results agreed well with experimental data of DCB joints containing bitumen films in terms of peak stress, fracture toughness, and stress-strain history response. The predicted "normalized toughness," G=2h, was found to increase in a power-law manner with effective temperaturecompensated strain rate in the ductile region as previously observed experimentally. In the brittle regime, G=2h is virtually constant. The model successfully captured the ductile and brittle failure behavior of bitumen films in opening mode (tension) for stable crack growth conditions. © 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The details of the Element Free Galerkin (EFG) method are presented with the method being applied to a study on hydraulic fracturing initiation and propagation process in a saturated porous medium using coupled hydro-mechanical numerical modelling. In this EFG method, interpolation (approximation) is based on nodes without using elements and hence an arbitrary discrete fracture path can be modelled.The numerical approach is based upon solving two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Displacement increment and pore water pressure increment are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system of equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on the penalty method. In order to model discrete fractures, the so-called diffraction method is used.Examples are presented and the results are compared to some closed-form solutions and FEM approximations in order to demonstrate the validity of the developed model and its capabilities. The model is able to take the anisotropy and inhomogeneity of the material into account. The applicability of the model is examined by simulating hydraulic fracture initiation and propagation process from a borehole by injection of fluid. The maximum tensile strength criterion and Mohr-Coulomb shear criterion are used for modelling tensile and shear fracture, respectively. The model successfully simulates the leak-off of fluid from the fracture into the surrounding material. The results indicate the importance of pore fluid pressure in the initiation and propagation pattern of fracture in saturated soils. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanics of failure for elastic-brittle lattice materials is reviewed. Closed-form expressions are summarized for fracture toughness as a function of relative density for a wide range of periodic lattices. A variety of theoretical and numerical approaches has been developed in the literature and in the main the predictions coincide for any given topology. However, there are discrepancies and the underlying reasons for these are highlighted. The role of imperfections at the cell wall level can be accounted for by Weibull analysis. Nevertheless, defects can also arise on the meso-scale in the form of misplaced joints, wavy cell walls and randomly distributed missing cell walls. These degrade the macroscopic fracture toughness of the lattice. © 2010 Springer Science+Business Media B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the effect of thermal cycles on the fracture properties of the cement-based bi-materials. Sixty eight cubes were exposed to a varied number of 24-hour thermal cycles ranging from 0 to 90 and subsequently were tested in a wedge splitting configuration. The mechanical and fracture properties of normal strength and high strength concretes are substantially improved after 30 thermal cycles, but less so after 90 thermal cycles both in isolation and when bonded to an ultra high-performance fibre-reinforced cement-based composite. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High strength steels can suffer from a loss of ductility when exposed to hydrogen, and this may lead to sudden failure. The hydrogen is either accommodated in the lattice or is trapped at defects, such as dislocations, grain boundaries and carbides. The challenge is to identify the effect of hydrogen located at different sites upon the drop in tensile strength of a high strength steel. For this purpose, literature data on the failure stress of notched and un-notched steel bars are re-analysed; the bars were tested over a wide range of strain rates and hydrogen concentrations. The local stress state at failure has been determined by the finite element (FE) method, and the concentration of both lattice and trapped hydrogen is predicted using Oriani's theory along with the stress-driven diffusion equation. The experimental data are rationalised in terms of a postulated failure locus of peak maximum principal stress versus lattice hydrogen concentration. This failure locus is treated as a unique material property for the given steel and heat treatment condition. We conclude that the presence of lattice hydrogen increases the susceptibility to hydrogen embrittlement whereas trapped hydrogen has only a negligible effect. It is also found that the observed failure strength of hydrogen charged un-notched bars is less than the peak local stress within the notched geometries. Weakest link statistics are used to account for this stressed volume effect. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture and time-dependent properties of cornea are very important for the development of corneal scaffolds and prostheses. However, there has been no systematic study of cornea fracture; time-dependent behavior of cornea has never been investigated in a fracture context. In this work, fracture toughness of cornea was characterized by trouser tear tests, and time-dependent properties of cornea were examined by stress-relaxation and uniaxial tensile tests. Control experiments were performed on a photoelastic rubber sheet. Corneal fracture resistance was found to be strain-rate dependent, with values ranging from 3.39±0.57 to 5.40±0.48kJm(-2) over strain rates from 3 to 300mmmin(-1). Results from stress-relaxation tests confirmed that cornea is a nonlinear viscoelastic material. The cornea behaved closer to a viscous fluid at small strain but became relatively more elastic at larger strain. Although cornea properties are greatly dependent on time, the stress-strain responses of cornea were found to be insensitive to the strain rate when subjected to tensile loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthesis by phytoplankton cells in aquatic environments contributes to more than 40% of the global primary production (Behrenfeld et al., 2006). Within the euphotic zone (down to 1% of surface photosynthetically active radiation [PAR]), cells are exposed not only to PAR (400-700 nm) but also to UV radiation (UVR; 280-400 nm) that can penetrate to considerable depths (Hargreaves, 2003). In contrast to PAR, which is energizing to photosynthesis, UVR is usually regarded as a stressor (Hader, 2003) and suggested to affect CO2-concentrating mechanisms in phytoplankton (Beardall et al., 2002). Solar UVR is known to reduce photosynthetic rates (Steemann Nielsen, 1964; Helbling et al., 2003), and damage cellular components such as D1 proteins (Sass et al., 1997) and DNA molecules (Buma et al., 2003). It can also decrease the growth (Villafane et al., 2003) and alter the rate of nutrient uptake (Fauchot et al., 2000) and the fatty acid composition (Goes et al., 1994) of phytoplankton. Recently, it has been found that natural levels of UVR can alter the morphology of the cyanobacterium Arthrospira (Spirulina) platensis (Wu et al., 2005b). On the other hand, positive effects of UVR, especially of UV- A (315-400 nm), have also been reported. UV- A enhances carbon fixation of phytoplankton under reduced (Nilawati et al., 1997; Barbieri et al., 2002) or fast-fluctuating (Helbling et al., 2003) solar irradiance and allows photorepair of UV- B-induced DNA damage (Buma et al., 2003). Furthermore, the presence of UV-A resulted in higher biomass production of A. platensis as compared to that under PAR alone (Wu et al., 2005a). Energy of UVR absorbed by the diatom Pseudo-nitzschia multiseries was found to cause fluorescence (Orellana et al., 2004). In addition, fluorescent pigments in corals and their algal symbiont are known to absorb UVR and play positive roles for the symbiotic photosynthesis and photoprotection (Schlichter et al., 1986; Salih et al., 2000). However, despite the positive effects that solar UVR may have on aquatic photosynthetic organisms, there is no direct evidence to what extent and howUVR per se is utilized by phytoplankton. In addition, estimations of aquatic biological production have been carried out in incubations considering only PAR (i. e. using UV-opaque vials made of glass or polycarbonate; Donk et al., 2001) without UVR being considered (Hein and Sand-Jensen, 1997; Schippers and Lurling, 2004). Here, we have found that UVR can act as an additional source of energy for photosynthesis in tropical marine phytoplankton, though it occasionally causes photoinhibition at high PAR levels. While UVR is usually thought of as damaging, our results indicate that UVR can enhance primary production of phytoplankton. Therefore, oceanic carbon fixation estimates may be underestimated by a large percentage if UVR is not taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatiotemporal variations of P species and adsorption behavior in water column, interstitial water, and sediments were investigated in the large shallow eutrophic Lake Chaohu. Orthophosphate (Ortho-P) and total phosphorus (TP) concentrations were significantly higher in the western part than in the eastern part of the lake, due to different nutrient inputs from the surrounding rivers. Moreover, particulate phosphorus (PP) concentration was in a similar spatial pattern to Ortho-P and TIP concentrations, and also showed significantly positive correlation with the biomass of Microcystis, indicating more uptake and store of phosphorus by Microcystis than by other algae. Increase of pH and intensive utilization of P by phytoplankton were the main factors promoting P (especially Fe-P) release from the sediment to interstitial water during the cyanobacterial blooms in Lake Chaohu. Spatial dynamics in TP concentration, P species and adsorption behavior of the sediment, coupled with the statistical analyses, suggested that the spatial heterogeneity of P contents in the sediment was influenced by various factors, e.g. human activities, soil geochemistry and mineral composition. In spite of similar TP contents in the sediments, increase in proportion of Fe-P concentration in the sediment may result in a high risk of P release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatase may accelerate the process of lake eutrophication through improving phosphorus bioavailability. This mechanism was studied in three Chinese eutrophic shallow lakes (Lake Taihu, Lake Longyang,and Lake Lianhua). Phosphatase activity was related to the concentration of soluble reactive phosphorus (SRP) and chlorophyll a. Stability of dissolved phosphatase in reverse micelles may be attributed to molecular size, conformation and active residues of the enzyme. At the site with Microcystis bloomed in Lake Taihu, dissolved phosphatase activity was higher and more stable in micelles, SRP concentrations were lower in interstitial water, the contents of different forms of phosphorus and the amounts of aerobic bacteria were lower while respiration efficiency was higher in sediments. Phosphobacteria, both inorganic and organic and other microorganisms were abundant in surface water but rare in sediments. Therefore, internal phosphorus may substantially flux into water column by enzymatic hydrolysis and anaerobic release, together with mobility of bacteria, thereby initiating the bloom. In short, biological mechanism may act in concert with physical and chemical factors to drive the internal phosphorus release and accelerate lake eutrophication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type species of the cyprinid genus Sinilabeo was misidentified as Varicorhinus tungting, and the species under the generic name belong to Bangana and Linichthys. In order to make Sinilabeo available, its type species is fixed under Article 70.3.2 of the 1999 edition of the International Code of Zoological Nomenclature as S. hummeli, a new species herein described from the upper Yangtze River basin in Chongqing City and Sichuan Province, South China. A re-definition is provided for Sinilabeo. It resembles Qianlabeo in having an upper lip only present in the side of the upper jaw and uncovered by the rostral fold, but missing in the median part of the upper jaw that, instead, bears a thin, flexible, and cornified sheath, covered by the rostral fold, a character that can separate both from all other existing genera of Asian labeonins. However, Sinilabeo is distinguished from Qianlabeo in the presence of a rostral fold disconnected from the lower lip; a broadly interrupted postlabial groove only restricted to the side of the lower jaw; an upper lip, which is only present in the side of the upper separated from it by a groove; 9-10 branched dorsal-fin rays; two pairs of tiny maxillary barbels.