949 resultados para Fractional derivatives
Resumo:
Four perylene derivatives (PTCD) have been used as transducing materials in taste sensors fabricated with nanostructured Langmuir-Blodgett (LB) films deposited onto interdigitated gold electrodes. The Langmuir monolayers of PTCDs display considerable collapse pressures, with areas per molecule indicative of an edge-on or head-on arrangement for the molecules at the air/water interface. The sensing units for the electronic tongue were produced from 5-layer LB films of the four PTCDs, whose electrical response was characterized with impedance spectroscopy. The distinct responses of the PTCDs, attributed to differences in their molecular structures, allowed one to obtain a finger printing system that was able to distinguish tastes (salty, sweet, bitter and sour) at 1 μM concentrations, which, in some cases, are three orders of magnitude below the human threshold. Using Principal Component Analysis (PCA) data analysis, the electronic tongue also detected trace amounts of a pesticide and could distinguish among samples of ultrapure, distilled and tap water, and two brands of mineral water. © 2004 by American Scientific Publishers. All rights reserved.
Resumo:
Second-order polynomial models have been used extensively to approximate the relationship between a response variable and several continuous factors. However, sometimes polynomial models do not adequately describe the important features of the response surface. This article describes the use of fractional polynomial models. It is shown how the models can be fitted, an appropriate model selected, and inference conducted. Polynomial and fractional polynomial models are fitted to two published datasets, illustrating that sometimes the fractional polynomial can give as good a fit to the data and much more plausible behavior between the design points than the polynomial model. © 2005 American Statistical Association and the International Biometric Society.
Resumo:
Knowledge about nonlinear absorption spectra of materials used in photonic devices is of paramount importance in determining their optimum operation wavelengths. In this work, we have investigated the two-photon absorption (2PA) degenerate cross-section spectrum for perylene derivatives using the Z-scan technique with femtosecond laser pulses. All perylene derivatives studied present large 2PA cross-sections, only comparable to the best ones reported in the literature. The results achieved in the present investigation indicate perylene derivatives as promising materials for two-photon applications. ©2005 Optical Society of America.