996 resultados para Fish toxicity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most assessments of fish stocks use some measure of the reproductive potential of a population, such as spawning biomass. However, the correlation between spawning biomass and reproductive potential is not always strong, and it likely is weakest in the tropics and subtropics, where species tend to exhibit indeterminate fecundity and release eggs in batches over a protracted spawning season. In such cases, computing annual reproductive output requires estimates of batch fecundity and the annual number of batches—the latter subject to spawning frequency and duration of spawning season. Batch fecundity is commonly measured by age (or size), but these other variables are not. Without the relevant data, the annual number of batches is assumed to be invariant across age. We reviewed the literature and found that this default assumption lacks empirical support because both spawning duration and spawning frequency generally increase with age or size. We demonstrate effects of this assumption on measures of reproductive value and spawning potential ratio, a metric commonly used to gauge stock status. Model applications showed substantial sensitivity to age dependence in the annual number of batches. If the annual number of batches increases with age but is incorrectly assumed to be constant, stock assessment models would tend to overestimate the biological reference points used for setting harvest rates. This study underscores the need to better understand the age- or size-dependent contrast in the annual number of batches, and we conclude that, for species without evidence to support invariance, the default assumption should be replaced with one that accounts for age- or size-dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition between freshwater and marine environments is associated with high mortality for juvenile anadromous salmonids, yet little is known about this critical period in many large rivers. To address this deficiency, we investigated the estuarine ecology of juvenile salmonids and their associated fish assemblage in open-water habitats of the lower Columbia River estuary during spring of 2007–10. For coho (Oncorhynchus kisutch), sockeye (O. nerka), chum (O. keta), and yearling (age 1.0) Chinook (O. tshawytscha) salmon, and steelhead (O. mykiss), we observed a consistent seasonal pattern characterized by extremely low abundances in mid-April, maximum abundances in May, and near absence by late June. Subyearling (age 0.0) Chinook salmon were most abundant in late June. Although we observed interannual variation in the presence, abundance, and size of juvenile salmonids, no single year was exceptional across all species-and-age classes. We estimated that >90% of juvenile Chinook and coho salmon and steelhead were of hatchery origin, a rate higher than previously reported. In contrast to juvenile salmonids, the abundance and composition of the greater estuarine fish assemblage, of which juvenile salmon were minor members, were extremely variable and likely responding to dynamic physical conditions in the estuary. Comparisons with studies conducted 3 decades earlier suggest striking changes in the estuarine fish assemblage—changes that have unknown but potentially important consequences for juvenile salmon in the Columbia River estuary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The harbor seal (Phoca vitulina) is a large-bodied and abundant predator in the Salish Sea ecosystem, and its population has recovered since the 1970s after passage of the Marine Mammal Protection Act and the cessation of bounties. Little is known about how this large predator population may affect the recovery of fish stocks in the Salish Sea, where candidate marine protected areas are being proposed. We used a bioenergetics model to calculate baseline consumption rates in the San Juan Islands, Washington. Salmonids (Oncorhynchus spp.) and herring (Clupeidae) were the 2 most energetically important prey groups for biomass consumed by harbor seals. Estimated consumption of salmonids was 783 (±380 standard deviation [SD]) metric tons (t) in the breeding season and 675 (±388 SD t in the nonbreeding season. Estimated consumption of herring was 646 (±303 SD) t in the breeding season and 2151 (±706 SD) t in the nonbreeding season. Rockfish, a depressed fish stock currently in need of population recovery, composed one of the minor prey groups consumed by harbor seals (84 [±26 SD] t in the nonbreeding season). The variables of seal body mass and proportion of prey in seal diet explained >80% of the total variation in model outputs. Prey groups, such as rockfish, that are targeted for recovery may still be affected by even low levels of predation. This study highlights the importance of salmonids and herring for the seal population and provides a framework for refining consumption estimates and their confidence intervals with future data.