970 resultados para Film deposition
Resumo:
Silicon oxide films were deposited by reactive evaporation of SiO. Parameters such as oxygen partial pressure and substrate temperature were varied to get variable and graded index films. Films with a refractive index in the range 1.718 to 1.465 at 550 nm have been successfully deposited. Films deposited using ionized oxygen has the refractive index 1.465 at 550 nm and good UV transmittance like bulk fused quartz. Preparation of graded index films was also investigated by changing the oxygen partial pressure during deposition. A two layer antireflection coating at 1064nm has been designed using both homogeneous and inhomogeneous films and studied their characteristics.
Resumo:
Copper (II) oxide (CuO)/multiwall carbon nanotube (MWNT) thin film based ethanol-sensors were fabricated by dispersing CVD-prepared MWNTs in varying concentration over DC magnetron sputtered-CuO films. The responses of these sensors as a function of MWNT concentrations and temperatures were measured, and compared. The sensing response was the maximum at an operating temperature near 400 degrees C for all the samples irrespective of the MWNTs dispersed over them. At optimum operating temperature (T(opt)) of 407 +/- 1 degrees C, the response is linear for 100-700 ppm range and tends to saturate at higher concentrations. In comparison with bare CuO sample, the response of CuO/MWNT sensing films increased up to 50% in the linear range. The response improvement for 2500 ppm of ethanol was up to 90% compared to bare CuO sample. In addition, the sensing response time also reduced to around 23% for lowest ethanol concentration at T(opt). However, a decrease in the sensor response was observed on films with very high concentrations of MWNTs. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Bilayer thin films of Te/As(2)S(3) were prepared from Te and As(2)S(3) by thermal technique under high vacuum. Optical constants were calculated by analysing the transmission spectrum in the spectral range 400-1100 nm. The optical band gap decreases with the addition of Te to As(2)S(3). The decrease of optical band gap has been explained on the basis of density of states and the increase in disorder in the system. We have irradiated the as-deposited films using a diode pumped solid state laser of 532 nm wavelength to study photo-diffusion of Te into As(2)S(3). The changes were characterised by Fourier Transform Infrared and X-ray Photoelectron Spectroscopy (XPS). The optical band gap is found to be decreased with the light irradiation which is proposed due to homopolar bond formation. The core level peaks in XPS spectra give information about different bond formation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The term Structural Health Monitoring has gained wide acceptance in the recent pastas a means to monitor a structure and provide an early warning of an unsafe conditionusing real-time data. Utilization of structurally integrated, distributed sensors tomonitor the health of a structure through accurate interpretation of sensor signals andreal-time data processing can greatly reduce the inspection burden. The rapidimprovement of the Fiber Bragg Grating sensor technology for strain, vibration andacoustic emission measurements in recent times make them a feasible alternatives tothe traditional strain gauges transducers and conventional Piezoelectric sensors usedfor Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM).Optical fiber-based sensors offers advantages over conventional strain gauges, PVDFfilm and PZT devices in terms of size, ease of embedment, immunity fromelectromagnetic interference(EMI) and potential for multiplexing a number ofsensors. The objective of this paper is to demonstrate the feasibility of Fiber BraggGrating sensor and compare its utility with the conventional strain gauges and PVDFfilm sensors. For this purpose experiments are being carried out in the laboratory on acomposite wing of a mini air vehicle (MAV). In this paper, the results obtained fromthese preliminary experiments are discussed.
Resumo:
The possible chemical reactions that take place during the growth of single crystal films of silicon on sapphire (SOS) are analyzed thermodynamically. The temperature for the growth of good quality epitaxial films is dependent on the extent of water vapor present in the carrier gas. The higher the water vapor content the higher the temperature needed to grow SOS films. Due to the interaction of silicon with sapphire at elevated temperatures, SOS films are doped with aluminum. The extent of doping is dependent on the conditions of film growth. The doping by aluminum from the substrate increases with increasing growth temperatures and decreasing growth rates. The equilibrium concentrations of aluminum at the silicon-sapphire interface are calculated as a function of deposition temperature, assuming that SiO2 or Al6Si2O13 are the products of reaction. It is most likely that the product could be a solid solutio n of Al2O3 in SiO2. The total amount of aluminum released due to the interaction between silicon and sapphire will account only for the formation of not more than one monolayer of reaction product unless the films are annealed long enough at elevated temperatures. This value is in good agreement with the recently reported observations employing high resolution transmission electron microscopy.