949 resultados para FTIR-spectrometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluated the capabilities of inductively coupled plasma mass spectrometry (ICP-MS) for elemental analysis of trace evidence. A method was developed and validated for the analysis of glass by ICP-MS. A database of ∼700 glass samples was analyzed for elemental composition by external calibration with internal standardization (EC) ICP-MS and refractive index (RI). Additional methods were developed during the course of this work using two well-known techniques, isotope dilution (ID) and laser ablation (LA). These methods were then applied to analyze subsets of this database. ICP-MS data from 161 containers, 45 headlamps, and 458 float glasses (among them at least 143 vehicle windows) are presented and summarized. Data from the analysis of ∼190 glass samples collected from a single glass manufacturing facility over a period of 53 months at different intervals, including 97 samples collected in a 24 hour period are presented. Data from the analysis of 125 glass samples representing 36 manufacturing plants in the U.S. are also presented. ^ The three methods used, ICP-MS, ID-ICP-MS and LA-ICP-MS, were shown to be excellent methods for distinguishing between different glass samples. The database provided information about the variability of refractive index and elemental composition in glasses from diverse population types. Using the proposed methods, the database supports the hypothesis that different glass samples have different elemental profiles and a comparison between fragments from the same source results in indistinguishable profiles. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire debris evidence is submitted to crime laboratories to determine if an ignitable liquid (IL) accelerant was used to commit arson. An ignitable liquid residue (ILR) may be difficult to analyze due to interferences, complex matrices, degradation, and low concentrations of analytes. Debris from an explosion and pre-detonated explosive compounds are not trivial to detect and identify due to sampling difficulties, complex matrices, and extremely low amounts (nanogram) of material present. The focus of this research is improving the sampling and detection of ILR and explosives through enhanced sensitivity, selectivity, and field portable instrumentation. Solid Phase MicroExtraction (SPME) enhanced the extraction of ILR by two orders of magnitude over conventional activated charcoal strip (ACS) extraction. Gas chromatography tandem mass spectrometry (GC/MS/MS) improved sensitivity of ILR by one order of magnitude and explosives by two orders of magnitude compared to gas chromatography mass spectrometry (GC/MS). Improvements in sensitivity were attributed to enhanced selectivity. An interface joining SPME to ion mobility spectrometry (IMS) has been constructed and evaluated to improve field detection of hidden explosives. The SPME-IMS interface improved the detection of volatile and semi-volatile explosive compounds and successfully adapted the IMS from a particle sampler into a vapor sampler. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The necessity of elemental analysis techniques to solve forensic problems continues to expand as the samples collected from crime scenes grow in complexity. Laser ablation ICP-MS (LA-ICP-MS) has been shown to provide a high degree of discrimination between samples that originate from different sources. In the first part of this research, two laser ablation ICP-MS systems were compared, one using a nanosecond laser and another a femtosecond laser source for the forensic analysis of glass. The results showed that femtosecond LA-ICP-MS did not provide significant improvements in terms of accuracy, precision and discrimination, however femtosecond LA-ICP-MS did provide lower detection limits. In addition, it was determined that even for femtosecond LA-ICP-MS an internal standard should be utilized to obtain accurate analytical results for glass analyses. In the second part, a method using laser induced breakdown spectroscopy (LIBS) for the forensic analysis of glass was shown to provide excellent discrimination for a glass set consisting of 41 automotive fragments. The discrimination power was compared to two of the leading elemental analysis techniques, μXRF and LA-ICP-MS, and the results were similar; all methods generated >99% discrimination and the pairs found indistinguishable were similar. An extensive data analysis approach for LIBS glass analyses was developed to minimize Type I and II errors en route to a recommendation of 10 ratios to be used for glass comparisons. Finally, a LA-ICP-MS method for the qualitative analysis and discrimination of gel ink sources was developed and tested for a set of ink samples. In the first discrimination study, qualitative analysis was used to obtain 95.6% discrimination for a blind study consisting of 45 black gel ink samples provided by the United States Secret Service. A 0.4% false exclusion (Type I) error rate and a 3.9% false inclusion (Type II) error rate was obtained for this discrimination study. In the second discrimination study, 99% discrimination power was achieved for a black gel ink pen set consisting of 24 self collected samples. The two pairs found to be indistinguishable came from the same source of origin (the same manufacturer and type of pen purchased in different locations). It was also found that gel ink from the same pen, regardless of the age, was indistinguishable as were gel ink pens (four pens) originating from the same pack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 9/11 Act mandates the inspection of 100% of cargo shipments entering the U.S. by 2012 and 100% inspection of air cargo by March 2010. So far, only 5% of inbound shipping containers are inspected thoroughly while air cargo inspections have fared better at 50%. Government officials have admitted that these milestones cannot be met since the appropriate technology does not exist. This research presents a novel planar solid phase microextraction (PSPME) device with enhanced surface area and capacity for collection of the volatile chemical signatures in air that are emitted from illicit compounds for direct introduction into ion mobility spectrometers (IMS) for detection. These IMS detectors are widely used to detect particles of illicit substances and do not have to be adapted specifically to this technology. For static extractions, PDMS and sol-gel PDMS PSPME devices provide significant increases in sensitivity over conventional fiber SPME. Results show a 50–400 times increase in mass detected of piperonal and a 2–4 times increase for TNT. In a blind study of 6 cases suspected to contain varying amounts of MDMA, PSPME-IMS correctly detected 5 positive cases with no false positives or negatives. One of these cases had minimal amounts of MDMA resulting in a false negative response for fiber SPME-IMS. A La (dihed) phase chemistry has shown an increase in the extraction efficiency of TNT and 2,4-DNT and enhanced retention over time. An alternative PSPME device was also developed for the rapid (seconds) dynamic sampling and preconcentration of large volumes of air for direct thermal desorption into an IMS. This device affords high extraction efficiencies due to strong retention properties under ambient conditions resulting in ppt detection limits when 3.5 L of air are sampled over the course of 10 seconds. Dynamic PSPME was used to sample the headspace over the following: MDMA tablets (12–40 ng detected of piperonal), high explosives (Pentolite) (0.6 ng detected of TNT), and several smokeless powders (26–35 ng of 2,4-DNT and 11–74 ng DPA detected). PSPME-IMS technology is flexible to end-user needs, is low-cost, rapid, sensitive, easy to use, easy to implement, and effective. ^