973 resultados para Extracellular signal-regulated kinase


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opitz syndrome (OS) is a human genetic disease characterized by deformities such as cleft palate that are attributable to defects in embryonic development at the midline. Gene mapping has identified OS mutations within a protein called Mid1. Wild-type Mid1 predominantly colocalizes with microtubules, in contrast to mutant versions of Mid1 that appear clustered in the cytosol. Using yeast two-hybrid screening, we found that the α4-subunit of protein phosphatases 2A/4/6 binds Mid1. Epitope-tagged α4 coimmunoprecipitated endogenous or coexpressed Mid1 from COS7 cells, and this required only the conserved C-terminal region of α4. Localization of Mid1 and α4 was influenced by one another in transiently transfected cells. Mid1 could recruit α4 onto microtubules, and high levels of α4 could displace Mid1 into the cytosol. Metabolic 32P labeling of cells showed that Mid1 is a phosphoprotein, and coexpression of full-length α4 decreased Mid1 phosphorylation, indicative of a functional interaction. Association of green fluorescent protein–Mid1 with microtubules in living cells was perturbed by inhibitors of MAP kinase activation. The conclusion is that Mid1 association with microtubules, which seems important for normal midline development, is regulated by dynamic phosphorylation involving MAP kinase and protein phosphatase that is targeted specifically to Mid1 by α4. Human birth defects may result from environmental or genetic disruption of this regulatory cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epithelial–mesenchymal transitions (EMTs) are an essential manifestation of epithelial cell plasticity during morphogenesis, wound healing, and tumor progression. Transforming growth factor-β (TGF-β) modulates epithelial plasticity in these physiological contexts by inducing EMT. Here we report a transcriptome screen of genetic programs of TGF-β-induced EMT in human keratinocytes and propose functional roles for extracellular response kinase (ERK) mitogen-activated protein kinase signaling in cell motility and disruption of adherens junctions. We used DNA arrays of 16,580 human cDNAs to identify 728 known genes regulated by TGF-β within 4 hours after treatment. TGF-β-stimulated ERK signaling mediated regulation of 80 target genes not previously associated with this pathway. This subset is enriched for genes with defined roles in cell–matrix interactions, cell motility, and endocytosis. ERK-independent genetic programs underlying the onset of EMT involve key pathways and regulators of epithelial dedifferentiation, undifferentiated transitional and mesenchymal progenitor phenotypes, and mediators of cytoskeletal reorganization. The gene expression profiling approach delineates complex context-dependent signaling pathways and transcriptional events that determine epithelial cell plasticity controlled by TGF-β. Investigation of the identified pathways and genes will advance the understanding of molecular mechanisms that underlie tumor invasiveness and metastasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal epithelial cells undergo apoptosis when they are denied contact with the extracellular matrix, in a process termed “anoikis.” Conversely, malignant epithelial cells typically acquire anchorage independence, i.e., the capacity to survive and grow in the absence of matrix interaction. Here we asked the question whether anoikis is affected by signaling through the EGF receptor (EGFR). We focused on the EGFR because EGFR signaling is frequently deregulated in malignant epithelial cells. We demonstrate that EGFR activation markedly alleviated the requirement of matrix engagement for survival of primary and immortalized human keratinocytes in suspension culture. Protection of epithelial cells through EGFR activation against anoikis was associated with and required sustained MAPK phosphorylation during the early phase of suspension culture. Interestingly, high levels of MAPK phosphorylation were not only required for EGFR-mediated protection against anoikis but also occurred as a consequence of caspase activation at later stages of suspension culture. These results demonstrate that EGFR activation contributes to anchorage-independent epithelial cell survival and identify MAPK activation as an important mechanism in this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exit from mitosis in budding yeast requires inactivation of cyclin-dependent kinases through mechanisms triggered by the protein phosphatase Cdc14. Cdc14 activity, in turn, is regulated by a group of proteins, the mitotic exit network (MEN), which includes Lte1, Tem1, Cdc5, Cdc15, Dbf2/Dbf20, and Mob1. The direct biochemical interactions between the components of the MEN remain largely unresolved. Here, we investigate the mechanisms that underlie activation of the protein kinase Dbf2. Dbf2 kinase activity depended on Tem1, Cdc15, and Mob1 in vivo. In vitro, recombinant protein kinase Cdc15 activated recombinant Dbf2, but only when Dbf2 was bound to Mob1. Conserved phosphorylation sites Ser-374 and Thr-544 (present in the human, Caenorhabditis elegans, and Drosophila melanogaster relatives of Dbf2) were required for DBF2 function in vivo, and activation of Dbf2-Mob1 by Cdc15 in vitro. Although Cdc15 phosphorylated Dbf2, Dbf2–Mob1, and Dbf2(S374A/T544A)–Mob1, the pattern of phosphate incorporation into Dbf2 was substantially altered by either the S374A T544A mutations or omission of Mob1. Thus, Cdc15 promotes the exit from mitosis by directly switching on the kinase activity of Dbf2. We propose that Mob1 promotes this activation process by enabling Cdc15 to phosphorylate the critical Ser-374 and Thr-544 phosphoacceptor sites of Dbf2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase–PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two functionally distinct sets of meristematic cells exist within root tips of pea (Pisum sativum): the root apical meristem, which gives rise to the body of the root; and the root cap meristem, which gives rise to cells that differentiate progressively through the cap and separate ultimately from its periphery as border cells. When a specific number of border cells has accumulated on the root cap periphery, mitosis within the root cap meristem, but not the apical meristem, is suppressed. When border cells are removed by immersion of the root tip in water, a transient induction of mitosis in the root cap meristem can be detected starting within 5 min. A corresponding switch in gene expression throughout the root cap occurs in parallel with the increase in mitosis, and new border cells begin to separate from the root cap periphery within 1 h. The induction of renewed border cell production is inhibited by incubating root tips in extracellular material released from border cells. The results are consistent with the hypothesis that operation of the root cap meristem and consequent turnover of the root cap is self-regulated by a signal from border cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elongation rates of barley (Hordeum vulgare L. cv Hanna) leaves decreased with decreasing soil water content, whereas the pH of xylem sap increased from 5.9 to 6.9 over 6 d as the soil dried. The reduction in leaf-elongation rate (LER) was correlated with the increase in sap pH. Artificial sap buffered to different pH values was fed via the subcrown internode to derooted seedlings. Although leaves elongated at in planta rates when fed artificial sap at a well-watered pH of 6.0, LER declined with increasing sap pH. This effect persisted in the light and in the dark. pH had no effect on the relative water content or the bulk abscisic acid (ABA) concentration of the growing zone of these leaves. LERs of the ABA-deficient mutant Az34 were uniformly high over the pH range tested, whereas those of its isogenic wild-type cultivar Steptoe were reduced as the artificial sap pH was increased from 6.0 to 7.0. However, supplying a well-watered concentration of ABA (3 × 10−8 m) in the artificial xylem sap restored the pH response of the Az34 mutant. The results suggest that increased xylem sap pH acts as a drought signal to reduce LER via an ABA-dependent mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CLAVATA1 (CLV1) gene encodes a putative receptor kinase required for the proper balance between cell proliferation and differentiation in Arabidopsis shoot and flower meristems. Impaired CLV1 signaling results in masses of undifferentiated cells at the shoot and floral meristems. Although many putative receptor kinases have been identified in plants, the mechanism of signal transduction mediated by plant receptor-like kinases is largely unknown. One potential effector of receptor kinase signaling is kinase-associated protein phosphatase (KAPP), a protein that binds to multiple plant receptor-like kinases in a phosphorylation-dependent manner. To examine a possible role for KAPP in CLV1-dependent plant development, the interaction of CLV1 and KAPP was investigated in vitro and in vivo. KAPP binds directly to autophosphorylated CLV1 in vitro and co-immunoprecipitates with CLV1 in plant extracts derived from meristematic tissue. Reduction of KAPP transcript accumulation in an intermediate clv1 mutant suppresses the mutant phenotype, and the degree of suppression is inversely correlated with KAPP mRNA levels. These data suggest that KAPP functions as a negative regulator of CLV1 signaling in plant development. This may represent a general model for the interaction of KAPP with receptor kinases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three light-regulated genes, chlorophyll a/b-binding protein (CAB), ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, and chalcone synthase (CHS), are demonstrated to be up-regulated in the high-pigment-1 (hp-1) mutant of tomato (Lycopersicon esculentum Mill.) compared with wild type (WT). However, the pattern of up-regulation of the three genes depends on the light conditions, stage of development, and tissue studied. Compared with WT, the hp-1 mutant showed higher CAB gene expression in the dark after a single red-light pulse and in the pericarp of immature fruits. However, in vegetative tissues of light-grown seedlings and adult plants, CAB mRNA accumulation did not differ between WT and the hp-1 mutant. The ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit mRNA accumulated to a higher level in the hp-1 mutant than WT under all light conditions and tissues studied, whereas CHS gene expression was up-regulated in de-etiolated vegetative hp-1-mutant tissues only. The CAB and CHS genes were shown to be phytochrome regulated and both phytochrome A and B1 play a role in CAB gene expression. These observations support the hypothesis that the HP-1 protein plays a general repressive role in phytochrome signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In wheat (Triticum aestivum) seedlings subjected to a mild water stress (water potential of −0.3 MPa), the leaf-elongation rate was reduced by one-half and the mitotic activity of mesophyll cells was reduced to 42% of well-watered controls within 1 d. There was also a reduction in the length of the zone of mesophyll cell division to within 4 mm from the base compared with 8 mm in control leaves. However, the period of division continued longer in the stressed than in the control leaves, and the final cell number in the stressed leaves reached 85% of controls. Cyclin-dependent protein kinase enzymes that are required in vivo for DNA replication and mitosis were recovered from the meristematic zone of leaves by affinity for p13suc1. Water stress caused a reduction in H1 histone kinase activity to one-half of the control level, although amounts of the enzyme were unaffected. Reduced activity was correlated with an increased proportion of the 34-kD Cdc2-like kinase (an enzyme sharing with the Cdc2 protein of other eukaryotes the same size, antigenic sites, affinity for p13suc1, and H1 histone kinase catalytic activity) deactivated by tyrosine phosphorylation. Deactivation to 50% occurred within 3 h of stress imposition in cells at the base of the meristematic zone and was therefore too fast to be explained by a reduction in the rate at which cells reached mitosis because of slowing of growth; rather, stress must have acted more immediately on the enzyme. The operation of controls slowing the exit from the G1 and G2 phases is discussed. We suggest that a water-stress signal acts on Cdc2 kinase by increasing phosphorylation of tyrosine, causing a shift to the inhibited form and slowing cell production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peptide substrates of well-defined protein kinases were microinjected into aleurone protoplasts of barley (Hordeum vulgare L. cv Himalaya) to inhibit, and therefore identify, protein kinase-regulated events in the transduction of the gibberellin (GA) and abscisic acid signals. Syntide-2, a substrate designed for Ca2+- and calmodulin (CaM)-dependent kinases, selectively inhibited the GA response, leaving constitutive and abscisic acid-regulated events unaffected. Microinjection of syntide did not affect the GA-induced increase in cytosolic [Ca2+], suggesting that it inhibited GA action downstream of the Ca2+ signal. When photoaffinity-labeled syntide-2 was electroporated into protoplasts and cross-linked to interacting proteins in situ, it selectively labeled proteins of approximately 30 and 55 kD. A 54-kD, soluble syntide-2 phosphorylating protein kinase was detected in aleurone cells. This kinase was activated by Ca2+ and was CaM independent, but was inhibited by the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (250 μm), suggesting that it was a CaM-domain protein kinase-like activity. These results suggest that syntide-2 inhibits the GA response of the aleurone via an interaction with this kinase, implicating the 54-kD kinase as a Ca2+-dependent regulator of the GA response in these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temporal and spatial expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes were investigated in pollinated orchid (Phalaenopsis spp.) flowers. Pollination signals initiate a cascade of development events in multiple floral organs, including the induction of ethylene biosynthesis, which coordinates several postpollination developmental responses. The initiation and propagation of ethylene biosynthesis is regulated by the coordinated expression of three distinct ACC synthase genes in orchid flowers. One ACC synthase gene (Phal-ACS1) is regulated by ethylene and participates in amplification and interorgan transmission of the pollination signal, as we have previously described in a related orchid genus. Two additional ACC synthase genes (Phal-ACS2 and Phal-ACS3) are expressed primarily in the stigma and ovary of pollinated orchid flowers. Phal-ACS2 mRNA accumulated in the stigma within 1 h after pollination, whereas Phal-ACS1 mRNA was not detected until 6 h after pollination. Similar to the expression of Phal-ACS2, the Phal-ACS3 gene was expressed within 2 h after pollination in the ovary. Exogenous application of auxin, but not ACC, mimicked pollination by stimulating a rapid increase in ACC synthase activity in the stigma and ovary and inducing Phal-ACS2 and Phal-ACS3 mRNA accumulation in the stigma and ovary, respectively. These results provide the basis for an expanded model of interorgan regulation of three ACC synthase genes that respond to both primary (Phal-ACS2 and Phal-ACS3) and secondary (Phal-ACS1) pollination signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorus is a major nutrient acquired by roots via high-affinity inorganic phosphate (Pi) transporters. In this paper, we describe the tissue-specific regulation of tomato (Lycopersicon esculentum L.) Pi-transporter genes by Pi. The encoded peptides of the LePT1 and LePT2 genes belong to a family of 12 membrane-spanning domain proteins and show a high degree of sequence identity to known high-affinity Pi transporters. Both genes are highly expressed in roots, although there is some expression of LePT1 in leaves. Their expression is markedly induced by Pi starvation but not by starvation of nitrogen, potassium, or iron. The transcripts are primarily localized in root epidermis under Pi starvation. Accumulation of LePT1 message was also observed in palisade parenchyma cells of Pi-starved leaves. Our data suggest that the epidermally localized Pi transporters may play a significant role in acquiring the nutrient under natural conditions. Divided root-system studies support the hypothesis that signal(s) for the Pi-starvation response may arise internally because of the changes in cellular concentration of phosphorus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The daily rhythm in melatonin levels is controlled by cAMP through actions on the penultimate enzyme in melatonin synthesis, arylalkylamine N-acetyltransferase (AANAT; serotonin N-acetyltransferase, EC 2.3.1.87). Results presented here describe a regulatory/binding sequence in AANAT that encodes a cAMP-operated binding switch through which cAMP-regulated protein kinase-catalyzed phosphorylation [RRHTLPAN → RRHpTLPAN] promotes formation of a complex with 14-3-3 proteins. Formation of this AANAT/14-3-3 complex enhances melatonin production by shielding AANAT from dephosphorylation and/or proteolysis and by decreasing the Km for 5-hydroxytryptamine (serotonin). Similar switches could play a role in cAMP signal transduction in other biological systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Xenopus oocyte system mitogen treatment triggers the G2/M transition by transiently inhibiting the cAMP-dependent protein kinase (PKA); subsequently, other signal transduction pathways are activated, including the mitogen-activated protein kinase (MAPK) and polo-like kinase pathways. To study the interactions between these pathways, we have utilized a cell-free oocyte extract that carries out the signaling events of oocyte maturation after addition of the heat-stable inhibitor of PKA, PKI. PKI stimulated the synthesis of Mos and activation of both the MAPK pathway and the Plx1/Cdc25C/cyclin B-Cdc2 pathway. Activation of the MAPK pathway alone by glutathione S-transferase (GST)-Mos did not lead to activation of Plx1 or cyclin B-Cdc2. Inhibition of the MAPK pathway in the extract by the MEK1 inhibitor U0126 delayed, but did not prevent, activation of the Plx1 pathway, and inhibition of Mos synthesis by cycloheximide had a similar effect, suggesting that MAPK activation is the only relevant function of Mos. Immunodepletion of Plx1 completely inhibited activation of Cdc25C and cyclin B-Cdc2 by PKI, indicating that Plx1 is necessary for Cdc25C activation. In extracts containing fully activated Plx1 and Cdc25C, inhibition of cyclin B-Cdc2 by p21Cip1 had no significant effect on either the phosphorylation of Cdc25C or the activity of Plx1. These results demonstrate that maintenance of Plx1 and Cdc25C activity during mitosis does not require cyclin B-Cdc2 activity.