976 resultados para Extended techniques
Resumo:
Human ingenuity has made it possible to advent the chromosome manipulation techniques to produce individuals with differing genomic status in a number of fish using various causal agents such as physical shocks (temperature or hydrostatic pressure), chemical (endomitotics) and anesthetic treatments either to suppress the second meiotic division shortly after fertilization of eggs or to prevent the first mitotic division shortly prior to mitotic cleavage formation. This results in the induction of polyploidy (triploidy and tetraploidy), gynogenesis (both meiotic and mitotic leading to clonal lines) and androgenesis in fish population. The rationale for the induction of such ploidy in fish has been its potential for generating sterile individuals, rapidly inbred lines and masculinized fish, which could be of benefit to fish farming and aquaculture. In this paper, these are critically reviewed and the implication of recently developed chromosome manipulation techniques to various fin fishes is discussed.
Resumo:
Advances in the dual electron-beam recrystallization technique arising from the fast scanning of a line beam parallel to the edges of narrow seeding windows are described. The resultant recrystallized layers are essentially defect-free, have good surface flatness, and cover large areas.
Resumo:
Ions generated during combustion have been used in three ways to give qualitative combustion information. Langmuir type probes have been inserted into the combustion chamber opposite the spark plug location. The centre electrode of the sparking plug itself has been used to produce an ionisation signal from the slightly ionised gases remaining after the flame front has departed. The spark discharge at ignition time has been used as an anemometer.
Resumo:
This paper describes a speech coding technique that has been developed in order to provide a method of digitising speech at bit rates in the range 4. 8 to 8 kb/s, that is insensitive to the effects of acoustic background noise and bit errors on the digital link. The main aim has been to develop a coding scheme which provides speech quality and robustness against noise and errors that is similar to a 16000 b/s continuously variable slope delta (CVSD) coder, but which operates at half its data rate or less. A desirable aim was to keep the complexity of the coding scheme within the scope of what could reasonably be handled by current signal processing chips or by a single custom integrated circuit. Applications areas include mobile radio and small Satcomms terminals.
Resumo:
A novel CMOS-compatible, heavily doped drift auxiliary cathode lateral insulated gate transistor (HDD-ACLIGT) structure is analyzed using two-dimensional device simulation techniques. Simulation results indicate that low on-resistance and a fast turn-off time of less than 50 ns can be achieved by incorporating an additional n+ region which is self-aligned to the gate between the p+ auxiliary cathode and the p well, together with an extended p buried layer in an anode-shorted modified lateral insulated gate transistor (MLIGT) structure. The on-state and its transient performance are analyzed in detail. The on-state performances of the HDD-ACLIGT and the MLIGT are compared and discussed. The results indicate that the HDD-ACLIGT structure is well suited for HVICs. The device is also well suited for integration with self-aligned digital CMOS.
Resumo:
Several approaches to designing schedule H-infinity control systems are compared. These include a controller switching approach and also parameter scheduling of an observer representation of the controller. They are illustrated by application to a Generic VSTOI. Aircraft Model (GVAM) supplied by The Royal Aerospace Establishment (RAE) at Bedford. The switched design has been tested on the simulator at RAE Bedford. The linear H-infinity designs make use of a loop-shaping followed by robust stabilisation to additive perturbations of a normalised coprime factorisation of the shaped plans. The different scheduling approaches are compared with respect to achieved robust stability levels. performance and complexity of implementation.
Resumo:
Jitter measurements were performed on a monolithically integrated active/passive cavity multiple quantum well laser, actively mode-locked at 10 GHz via modulation of an absorber section. Sub-10 ps pulses were produced upon optimization of the drive conditions to the gain, distributed Bragg reflector, and absorber sections. A model was also developed using travelling wave rate equations. Simulation results suggest that spontaneous emission is the dominant cause of jitter, with carrier dynamics having a time constant of the order of 1 ns.
Resumo:
Several small scleractinian coral colonies were collected from a remote reef and transferred [to] the Louisiana Universities Marine Center (LUMCON) for in vitro reproductive and larval studies. The species used here were Porites astreoides and Diploria strigosa. Colony size was ~20 cm in diameter. Colonies were brought to the surface by liftbag and stored in modified ice coolers. They were transported from Freeport, TX to Cocodrie, LA by truck for nearly 15 hours where field conditions were simulated in waiting aquaria. This document describes the techniques and equipment that were used, how to outfit such aquaria, proper handling techniques for coral colonies, and several eventualities that the mariculturist should be prepared for in undertaking this endeavor. It will hopefully prevent many mistakes from being made.
Resumo:
A model of lubricated cold strip rolling (1, 2) is extended to the thin foil regime. The model considers the evolution of asperity geometry and lubricant pressure through the bite, treating the strip using a conventional slab model. The elastic deflections of the rolls are coupled into the problem using an elastic finite element model. Friction between the roll and the asperities on the strip is modelled using the Coulomb and Tresca friction factor approaches. The shear stress in the Coulomb friction model is limited to the shear yield stress of the strip. A novel modification to these standard friction laws is used to mimic slipping friction in the reduction regions and sticking friction in a central neutral zone. The model is able to reproduce the sticking and slipping zones predicted by Fleck et al. (3). The variation of rolling load, lubricant film thickness and asperity contact area with rolling speed is examined, for conditions typical of rolling aluminium foil from a thickness of 50 to 25 μm. T he contact area and hence friction rises as the speed drops, leading to a large increase in rolling load. This increase is considerably more marked using Coulomb friction as compared with the friction factor approach. Forward slip increases markedly as the speed falls and a significant sticking region develops.
Resumo:
In the field of flat panel displays, the current leading technology is the Active Matrix liquid Crystal Display; this uses a-Si:H based thin film transistors (TFTs) as the switching element in each pixel. However, under gate bias a-Si:H TFTs suffer from instability, as is evidenced by a shift in the gate threshold voltage. The shift in the gate threshold voltage is generally measured from the gate transfer characteristics, after subjecting the TFT to prolonged gate bias. However, a major drawback of this measurement method is that it cannot distinguish whether the shift is caused by the change in the midgap states in the a-Si:H channel or by charge trapping in the gate insulator. In view of this, we have developed a capacitance-voltage (C-V) method to measure the shift in threshold voltage. We employ Metal-Insulator-Semiconductor (MIS) structures to investigate the threshold voltage shift as they are simpler to fabricate than TFTs. We have investigated a large of number Metal/a-Si:H/Si3N4/Si+n structures using our C-V technique. From, the C-V data for the MIS structures, we have found that the relationship between the thermal energy and threshold voltage shift is similar to that reported by Wehrspohn et. al in a-Si:H TFTs (J Appl. Phys, 144, 87, 2000). The a-Si:H and Si3N4 layers were grown using the radio-frequency plasma-enhanced chemical vapour deposition technique.
Resumo:
Indentation of linearly viscoelastic materials is explored using elastic-viscoelastic correspondence analysis for both conical-pyramidal and spherical indentation. Boltzmann hereditary integrals are used to generate displacement-time solutions for loading at constant rate and creep following ramp loading. Experimental data for triangle- and trapezoidal-loading are examined for commercially-available polymers and compared with analytical solutions. Emphasis is given to the use of multiple experiments to test the fidelity and predictive capability of the obtained material creep function. Plastic deformation occurs in sharp indentation of glassy polymers and is found to complicate the viscoelastic analysis. A new method is proposed for estimating a material time-constant from peak displacement or hardness data obtained in pyramidal indentation tests performed at different loading rates.